Efficient decentralized optimization for edge-enabled smart manufacturing: A federated learning-based framework

被引:4
作者
Liu, Huan [1 ]
Li, Shiyong [1 ]
Li, Wenzhe [1 ]
Sun, Wei [1 ]
机构
[1] Yanshan Univ, Sch Econ & Management, Hebei St 438, Qinhuangdao 066004, Hebei, Peoples R China
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2024年 / 157卷
基金
国家教育部科学基金资助;
关键词
Edge-enabled smart manufacturing; Decentralized optimization; Industrial prediction; Inexact ADMM algorithm; Machine learning; SELECTION; TASKS;
D O I
10.1016/j.future.2024.03.043
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The volume of industrial data of smart manufacturing is growing rapidly. Edge computing has emerged as an advanced technique that provides scalable resources for Industrial Internet of Things (IIoT) devices to analyze industrial data and enhance productivity. However, real-time and privacy-protecting data services are crucial for comprehensive decision-making, particularly utilizing machine learning in edge-enabled smart manufacturing. Therefore, how to optimize efficiently the data processing has become a critical concern for manufacturers seeking to upgrade the overall manufacturing operations. In this paper, we propose a decentralized federated learning-based framework to ensure the processing of industrial data in a low-latency and secure manner. Our solution designs the combination between edge nodes and IIoT devices as a global consensus problem with equilibrium constraints. Moreover, we adopt the distributed Alternating Direction Method of Multipliers (ADMM) algorithm to optimize the proposed data processing model, considering its advantages of decomposability and parallelism. To flexibly handle various types of industrial data, such as low-rank and high-dimensional data, we present two types of inexact ADMM algorithms to provide efficient model training services, respectively. Furthermore, an integrated optimization flow is designed for data processing in edge-enabled smart manufacturing. Finally, using industrial datasets from a thermal power plant for steam prediction case, we show that the presented inexact algorithms can decrease the response time by up to 17.2% and 58% respectively compared to other existing algorithms, respectively, while achieving the comparable level of statistical accuracy.
引用
收藏
页码:422 / 435
页数:14
相关论文
共 50 条
  • [41] A framework for energy optimization of distillation process using machine learning-based predictive model
    Park, Hyundo
    Kwon, Hyukwon
    Cho, Hyungtae
    Kim, Junghwan
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (06) : 1913 - 1924
  • [42] HoneyTwin: Securing smart cities with machine learning-enabled SDN edge and cloud-based honeypots
    Alani, Mohammed M.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2024, 188
  • [43] Development and Multinational Validation of a Machine Learning-Based Optimization for Efficient Screening for Elevated Lipoprotein(a)
    Aminorroaya, Arya
    Dhingra, Lovedeep S.
    Saadatagah, Seyedmohammad
    Spatz, Erica S.
    Oikonomou, Evangelos K.
    Khera, Rohan
    CIRCULATION, 2023, 148
  • [44] A Learning-to-Rank-Based Investment Portfolio Optimization Framework for Smart Grid Planning
    Zhao, Wenxin
    Liu, Xubin
    Wu, Yujie
    Zhang, Tao
    Zhang, Luao
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [45] DL4SC: a novel deep learning-based vulnerability detection framework for smart contracts
    Yang Liu
    Chao Wang
    Yan Ma
    Automated Software Engineering, 2024, 31
  • [46] DL4SC: a novel deep learning-based vulnerability detection framework for smart contracts
    Liu, Yang
    Wang, Chao
    Ma, Yan
    AUTOMATED SOFTWARE ENGINEERING, 2024, 31 (01)
  • [47] A Deep Learning-Based Smart Framework for Cyber-Physical and Satellite System Security Threats Detection
    Ashraf, Imran
    Narra, Manideep
    Umer, Muhammad
    Majeed, Rizwan
    Sadiq, Saima
    Javaid, Fawad
    Rasool, Nouman
    ELECTRONICS, 2022, 11 (04)
  • [48] Deep Learning-Based Framework for Efficient Design of Multicomponent High Hardness High Entropy Alloys
    Han, Yuexing
    Wang, Hui
    Xu, Pengfei
    Chen, Qiaochuan
    Zhang, Rui
    Liu, Yi
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (13) : 19952 - 19965
  • [49] An interpretable machine learning-based optimization framework for the optimal design of carbon dioxide to methane process
    Bao, Runjie
    Zhang, Fu
    Rong, Dongwen
    Wang, Zhao
    Guo, Qiwen
    Yang, Qingchun
    ENERGY CONVERSION AND MANAGEMENT, 2024, 320
  • [50] Machine learning-based multi-objective optimization framework for industrial black nickel electroplating
    Ren, Junhao
    Kang, Qiyu
    Feng, Shuo
    Sun, Yajuan
    Tan, Yong Teck
    Xiao, Gaoxi
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025,