Low-carbon power system operation with disperse carbon capture-transportation-utilization chain

被引:0
|
作者
Song, Zhenzi [1 ]
Wang, Xiuli [1 ]
Zhao, Tianyang [2 ]
Hesamzadeh, Mohammad Reza [3 ]
Qian, Tao [4 ]
Huang, Jing [5 ]
Li, Xin [6 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, Xian, Peoples R China
[2] Jinan Univ, Energy & Elect Res Ctr, Jinan, Guangdong, Peoples R China
[3] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Stockholm, Sweden
[4] Southeast Univ, Sch Elect Engn, Nanjing, Peoples R China
[5] Sichuan Univ, Sch Elect Engn, Chengdu, Peoples R China
[6] State Grid Shaanxi Elect Power Co Ltd, Xian, Peoples R China
关键词
carbon capture and storage; decomposition; linearization techniques; network topology; stochastic programming; UNIT COMMITMENT; CO2; CAPTURE; ENERGY; DISPATCH; STORAGE; OPTIMIZATION; GENERATION; EFFICIENCY; RESOURCES; PLANTS;
D O I
10.1049/gtd2.13184
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The carbon capture-transportation-utilization (C-CTU) chain strengthens the coupling between terminal energy consumption and renewable energy resources (RES), achieving carbon emission reduction in power generation sectors. However, the dynamic operation of the C-CTU chain and the uncertainties induced by RES output pose new challenges for the low-carbon operation. To address above challenges, the nonlinear dynamic operation model of C-CTU chain is first proposed in this study. It is further incorporated into the day-ahead operation scheme of the electricity-carbon integrated system considering the stochastic nature of wind power. This scheme is treated as a two-stage stochastic integer programming (TS-SIP) problem with a mixed-integer nonlinear recourse. By means of the polyhedral envelope-based linearization method, this recourse is reformulated into its linear counterpart. To further improve the computational performance of classical decomposition algorithms, a novel Benders decomposition framework with hybrid cutting plane strategies is proposed to obtain better feasible solutions within a limited time. Simulations are conducted on two power system test cases with the C-CTU chain. Numerical results indicate that the engagement of C-CTU chain promotes the low-carbon economic operation of the power system. Also, the proposed decomposition algorithm shows a superior solution capability to handle large-scale TS-SIP than state-of-the-art commercial solvers. Nonlinear dynamic model of Carbon Capture-Transportation-Utilization Chain is established. A TS-SIP model for the day-ahead operation scheme of the electricity-carbon integrated system is constructed. An efficient Benders decomposition framework is designed image
引用
收藏
页码:2089 / 2104
页数:16
相关论文
共 50 条
  • [1] Low-Carbon Power System Dispatch Incorporating Carbon Capture Power Plants
    Ji, Zhen
    Kang, Chongqing
    Chen, Qixin
    Xia, Qing
    Jiang, Changming
    Chen, Zhixu
    Xin, Jianbo
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) : 4615 - 4623
  • [2] Stochastic low-carbon scheduling with carbon capture power plants and coupon-based demand response
    Li, Xue
    Zhang, Rufeng
    Bai, Linquan
    Li, Guoqing
    Jiang, Tao
    Chen, Houhe
    APPLIED ENERGY, 2018, 210 : 1219 - 1228
  • [3] Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System
    Li, Yong
    Zou, Yao
    Tan, Yi
    Cao, Yijia
    Liu, Xindong
    Shahidehpour, Mohammad
    Tian, Shiming
    Bu, Fanpeng
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (01) : 273 - 283
  • [4] The roles of carbon capture, utilization and storage in the transition to a low-carbon energy system using a stochastic optimal scheduling approach
    Chen, Xianhao
    Wu, Xiao
    JOURNAL OF CLEANER PRODUCTION, 2022, 366
  • [5] Power system economic dispatch under low-carbon economy with carbon capture plants considered
    Lu, Siyu
    Lou, Suhua
    Wu, Yaowu
    Yin, Xianggen
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2013, 7 (09) : 991 - 1001
  • [6] Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions
    Manaf, Norhuda Abdul
    Qadir, Abdul
    Abbas, Ali
    APPLIED ENERGY, 2016, 169 : 912 - 926
  • [7] Exergy analysis of combined cycle power plant with carbon capture and utilization
    Prakash, Divya
    Singh, Onkar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 15297 - 15318
  • [8] Low-carbon unit commitment with intensive wind power generation and carbon capture power plant
    Li, Jiaming
    Wen, Jinyu
    Han, Xingning
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2015, 3 (01) : 63 - 71
  • [9] Operational flexibility and economics of power plants in future low-carbon power systems
    Brouwer, Anne Sjoerd
    van den Broek, Machteld
    Seebregts, Ad
    Faaij, Andre
    APPLIED ENERGY, 2015, 156 : 107 - 128
  • [10] Low-carbon transformation of ethylene production system through deployment of carbon capture, utilization, storage and renewable energy technologies
    Zheng, Cheng
    Wu, Xiao
    Chen, Xianhao
    JOURNAL OF CLEANER PRODUCTION, 2023, 413