GLOBAL WELL-POSEDNESS OF THE 3D GENERALIZED BOUSSINESQ EQUATIONS

被引:0
|
作者
Xu, Bo [1 ]
Zhou, Jiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 12期
基金
中国国家自然科学基金;
关键词
Generalized Boussinesq equations; damping; mild solutions; global well-posedness; MILD SOLUTIONS;
D O I
10.3934/dcdsb.2024067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the 3D generalized incompressible Boussinesq equations in chi 1-2 alpha . However, the main difficulty lies in how to handle the terms (u u <middle dot> del) 8 and 8e3. e 3 . This paper overcomes this challenge in two ways, making it possible to study the global well-posedness. One is to eliminate the term 8e3 e 3 by adding general time -dependent viscosity coefficients, and the other is to introduce a damping term to make the thermal decay faster.
引用
收藏
页码:4821 / 4829
页数:9
相关论文
共 50 条
  • [1] Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations
    Quan-sen Jiu
    Huan Yu
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 1 - 16
  • [2] Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations
    Jiu, Quan-sen
    Yu, Huan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 1 - 16
  • [3] Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations
    Quan-sen JIU
    Huan YU
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 1 - 16
  • [4] Global well-posedness for the 3D Newton-Boussinesq equations
    Wu, Lili
    ARMENIAN JOURNAL OF MATHEMATICS, 2016, 8 (01): : 58 - 67
  • [5] On the global well-posedness of a generalized 2D Boussinesq equations
    Junxiong Jia
    Jigen Peng
    Kexue Li
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 911 - 945
  • [6] On the global well-posedness of a generalized 2D Boussinesq equations
    Jia, Junxiong
    Peng, Jigen
    Li, Kexue
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04): : 911 - 945
  • [7] Global well-posedness and long time decay of the 3D Boussinesq equations
    Liu, Hui
    Gao, Hongjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) : 8649 - 8665
  • [8] On global well-posedness for the 3D Boussinesq equations with fractional partial dissipation
    Ye, Zhuan
    APPLIED MATHEMATICS LETTERS, 2019, 90 : 1 - 7
  • [9] Global Well-posedness of the 3D Generalized Rotating Magnetohydrodynamics Equations
    Wei Hua WANG
    Gang WU
    ActaMathematicaSinica, 2018, 34 (06) : 992 - 1000
  • [10] Global Well-posedness of the 3D Generalized Rotating Magnetohydrodynamics Equations
    Wei Hua WANG
    Gang WU
    Acta Mathematica Sinica,English Series, 2018, (06) : 992 - 1000