Guanidine carbonate modified TiO2/Perovskite interface for efficient and stable planar perovskite solar cells

被引:6
作者
Hong, Shiqi [1 ,2 ]
Cui, Along [2 ]
Liu, Suolan [2 ]
Yang, Songwang [1 ,2 ]
机构
[1] Shanghai Normal Univ SNU, Sch Chem & Mat Sci, 100 Guilin Rd, Shanghai 200234, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, 588 Heshuo Rd, Shanghai 201899, Peoples R China
关键词
Perovskite solar cells; Buried interface; TiO 2 electron transport layer; Guanidine carbonate; Crystallization; Charge recombination; PASSIVATION; FILMS;
D O I
10.1016/j.orgel.2024.107063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rational design and modification of the buried interface are essential and challenging for high-performance perovskite solar cells (PSCs). TiO2 is a simple and readily available electron transport layer material, but its surface defects and poor interfacial contact with perovskite layers hinder its widespread application. Here, we propose an effective TiO2/perovskite interface modification strategy by introducing simple guanidine carbonate (GuaCO3) onto the surface of TiO2. Guanidine carbonate can improve the interfacial contact between TiO2 and perovskite, reduce non-radiative recombination, and enhance carrier extraction. Moreover, the PbI2 film grown on the TiO2/GuaCO3 substrate tended to become porous during the preparation of perovskite films by the traditional two-step method, which facilitated the complete reaction of organic ammonium salts with PbI2 and promoted the growth of high-quality perovskite films. The experimental results indicate that GuaCO3 can passivate the interfacial defects of TiO2/perovskite, as well as reduce the accumulation of interfacial charges. The device modified with GuaCO3 achieved a power conversion efficiency (PCE) of 23.39 %, which is significantly higher than that of the control device (21.73 %). After storage in an ambient environment at room temperature for 600 h, the unencapsulated device modified with GuaCO3 retained 78 % of its initial efficiency, while the control device retained only 57 % of its initial efficiency. These results indicate that interfacial modification with GuaCO3 is an effective strategy for improving the performance of PSCs.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Defect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable Perovskite Solar Cells [J].
Bang, Su-Mi ;
Shin, Seong Sik ;
Jeon, Nam Joong ;
Kim, Young Yun ;
Kim, Geunjin ;
Yang, Tae-Youl ;
Seo, Jangwon .
ACS ENERGY LETTERS, 2020, 5 (04) :1198-1205
[2]   Solvent Engineering of the Precursor Solution toward Large-Area Production of Perovskite Solar Cells [J].
Chao, Lingfeng ;
Niu, Tingting ;
Gao, Weiyin ;
Ran, Chenxin ;
Song, Lin ;
Chen, Yonghua ;
Huang, Wei .
ADVANCED MATERIALS, 2021, 33 (14)
[3]   Imperfections and their passivation in halide perovskite solar cells [J].
Chen, Bo ;
Rudd, Peter N. ;
Yang, Shuang ;
Yuan, Yongbo ;
Huang, Jinsong .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (14) :3842-3867
[4]   Improving the Performance and Stability of Perovskite Solar Cells through Buried Interface Passivation Using Potassium Hydroxide [J].
Du, Jiuyao ;
Yuan, Jifeng ;
Wang, Hui ;
Huang, Fei ;
Tian, Jianjun .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) :1914-1921
[5]   Omnidirectional diffusion of organic amine salts assisted by ordered arrays in porous lead iodide for two-step deposited large-area perovskite solar cells [J].
He, Jiacheng ;
Sheng, Wangping ;
Yang, Jia ;
Zhong, Yang ;
Su, Yang ;
Tan, Licheng ;
Chen, Yiwang .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (02) :629-640
[6]   24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition [J].
Huang, Hao ;
Cui, Peng ;
Chen, Yan ;
Yan, Luyao ;
Yue, Xiaopeng ;
Qu, Shujie ;
Wang, Xinxin ;
Du, Shuxian ;
Liu, Benyu ;
Zhang, Qiang ;
Lan, Zhineng ;
Yang, Yingying ;
Ji, Jun ;
Zhao, Xing ;
Li, Yingfeng ;
Wang, Xin ;
Ding, Xunlei ;
Li, Meicheng .
JOULE, 2022, 6 (09) :2186-2202
[7]   Compositional engineering of perovskite materials for high-performance solar cells [J].
Jeon, Nam Joong ;
Noh, Jun Hong ;
Yang, Woon Seok ;
Kim, Young Chan ;
Ryu, Seungchan ;
Seo, Jangwon ;
Seok, Sang Il .
NATURE, 2015, 517 (7535) :476-+
[8]   Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States [J].
Ji, Jun ;
Liu, Xin ;
Jiang, Haoran ;
Duan, Mingjun ;
Liu, Benyu ;
Huang, Hao ;
Wei, Dong ;
Li, Yingfeng ;
Li, Meicheng .
ISCIENCE, 2020, 23 (04)
[9]   Probing Facet-Dependent Surface Defects in MAPbI3 Perovskite Single Crystals [J].
Kim, Dohyung ;
Yun, Jung-Ho ;
Lyu, Miaoqiang ;
Kim, Jincheol ;
Lim, Sean ;
Yun, Jae Sung ;
Wang, Lianzhou ;
Seidel, Jan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (23) :14144-14151
[10]   An atomistic mechanism for the degradation of perovskite solar cells by trapped charge [J].
Kwak, Kwisung ;
Lim, Eunhak ;
Ahn, Namyoung ;
Heo, Jiyoung ;
Bang, Kijoon ;
Kim, Seong Keun ;
Choi, Mansoo .
NANOSCALE, 2019, 11 (23) :11369-11378