Pebbling in Kneser Graphs

被引:0
作者
Adauto, Matheus [1 ,3 ]
Bardenova, Viktoriya [3 ]
da Cruz, Mariana [1 ]
de Figueiredo, Celina [1 ]
Hurlbert, Glenn [3 ]
Sasaki, Diana [2 ]
机构
[1] Univ Fed Rio De Janeiro, Programa Engn Sistemas Comp, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Inst Matemat Estat, Rio De Janeiro, Brazil
[3] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
来源
LATIN 2024: THEORETICAL INFORMATICS, PT II | 2024年 / 14579卷
关键词
graph pebbling; Kneser graphs; odd graphs; weight function method; DIAMETER;
D O I
10.1007/978-3-031-55601-2_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Graph pebbling is a game played on graphs with pebbles on their vertices. A pebbling move removes two pebbles from one vertex and places one pebble on an adjacent vertex. The pebbling number pi(G) is the smallest t so that from any initial configuration of t pebbles it is possible, after a sequence of pebbling moves, to place a pebble on any given target vertex. We consider the pebbling number of Kneser graphs, and give positive evidence for the conjecture that every Kneser graph has pebbling number equal to its number of vertices.
引用
收藏
页码:46 / 60
页数:15
相关论文
共 16 条
  • [1] Adauto M, 2024, Arxiv, DOI arXiv:2303.13292
  • [2] Pebbling in powers of paths
    Alcon, Liliana
    Hurlbert, Glenn
    [J]. DISCRETE MATHEMATICS, 2023, 346 (05)
  • [3] Pebbling in semi-2-trees
    Alcon, Liliana
    Gutierrez, Marisa
    Hurlbert, Glenn
    [J]. DISCRETE MATHEMATICS, 2017, 340 (07) : 1467 - 1480
  • [4] PEBBLING IN SPLIT GRAPHS
    Alcon, Liliana
    Gutierrez, Marisa
    Hurlbert, Glenn
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1449 - 1466
  • [5] Improved pebbling bounds
    Chan, Melody
    Godbole, Anant P.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (11) : 2301 - 2306
  • [6] Chung F.R.K., 1989, SIAM J DISCRETE MATH, V2, P467, DOI [10.1137/0402041, DOI 10.1137/0402041]
  • [7] Clarke TA, 1997, J GRAPH THEOR, V25, P119, DOI 10.1002/(SICI)1097-0118(199706)25:2<119::AID-JGT3>3.3.CO
  • [8] 2-#
  • [9] Modified linear programming and class 0 bounds for graph pebbling
    Cranston, Daniel W.
    Postle, Luke
    Xue, Chenxiao
    Yerger, Carl
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (01) : 114 - 132
  • [10] A note on graph pebbling
    Czygrinow, A
    Hurlbert, G
    Kierstead, HAI
    Trotter, WT
    [J]. GRAPHS AND COMBINATORICS, 2002, 18 (02) : 219 - 225