THERMAL ANALYSIS OF THERMOSYPHON FOR WASTE HEAT RECOVERY FROM AUTO EXHAUST USING LIMITED FLUID CHARGE

被引:0
|
作者
Xiao, Bin [1 ]
机构
[1] Texas State Univ, 601 Univ Dr, San Marcos, TX 78666 USA
来源
PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10 | 2023年
关键词
Thermosyphon; Heat Recovery System; Auto Exhaust; Parametric Effect; PERFORMANCE; EXCHANGER;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An experimental investigation was carried out to analyze the thermal performance of a thermosyphon that recovers waste heat from automobile exhaust using a limited fluid charge in this study. The thermosyphon was constructed from Inconel alloy 625. The outer diameter of the thermosyphon measures 27 mm, with a thickness of 2.6 mm, and an overall length of 483 mm, which includes a 180-mm evaporator, a 70-mm adiabatic section, a 223-mm condenser, and a 97-mm finned exchanger. The study involved directing exhaust gas onto the evaporator end cap at a flow rate ranging from 0-10 g/sec, with temperatures varying from 300-900 degrees C. The impact of three parameters, namely the inclination angle (ranging from 5 degrees-45 degrees), water mass (ranging from 2 g-5.3 g), and the amount of non-condensable gas Argon (ranging from 0 g-0.6 g), were analyzed to determine their effects on the thermal performance of the thermosyphon. Based on the experimental results, it was observed that when the thermosyphon contained 3 g of water and 0.0564g of argon, the condenser achieved a maximum temperature of approximately 200 degrees C. The optimal fuel loading rate for the thermosyphon lies within the range of 0.2 g/s to 0.7 g/s. Furthermore, outer wall temperatures of the thermosyphon increase as inclination angles increase due to the explicit expansion of the actual heating area within the evaporation section of the thermosyphon, accompanied by an augmented gravitational component of the water flux. An increase in the quantity of non-condensable gas (NCG) can diminish temperature gradients on the outer wall of the thermosyphon, leading to a reduction in the thermosyphon's performance. The insulation applied at the adiabatic section proved effective in increasing temperature gradients on the outer wall of the thermosyphon and thereby enhancing the performance of the thermosyphon. With an increase in the water charge within the thermosyphon, heat transfer rates from the exhaust to the thermosyphon and from the thermosyphon to the fuel increase.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Heat Recovery from Automotive Exhaust Using Heat Pipes with Limited Fluid Charge
    Xiao, Bin
    FRONTIERS IN HEAT AND MASS TRANSFER, 2024, 22 (01): : 35 - 48
  • [2] Theoretical thermal analysis of heat recovery by two phase closed Thermosyphon from engine exhaust
    Yerne, Yogita Umesh
    Bhusnoor, Siddappa Sharanappa
    HEAT AND MASS TRANSFER, 2019, 55 (11) : 3211 - 3221
  • [3] Optimization Design of an Intermediate Fluid Thermoelectric Generator for Exhaust Waste Heat Recovery
    Zhang, Wei
    Li, Wenjie
    Li, Shuqian
    Xie, Liyao
    Ge, Minghui
    Zhao, Yulong
    PROCESSES, 2023, 11 (06)
  • [4] Thermal performance of a two-phase closed thermosyphon for waste heat recovery system
    Kannan M.
    Natarajan E.
    Journal of Applied Sciences, 2010, 10 (05) : 413 - 418
  • [5] Thermal desalination using diesel engine exhaust waste heat - An experimental analysis
    Maheswari, K. S.
    Murugavel, K. Kalidasa
    Esakkimuthu, G.
    DESALINATION, 2015, 358 : 94 - 100
  • [6] Thermodynamic and statistical analysis on the effect of exhaust gas recirculation on waste heat recovery from homogeneous charge compression ignition engines
    Parsa, Somyeh
    Neshat, Elaheh
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (11) : 6349 - 6361
  • [7] Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery
    Zhao, Yulong
    Li, Wenjie
    Zhao, Xianglin
    Wang, Yulin
    Luo, Ding
    Li, Yanzhe
    Ge, Minghui
    APPLIED THERMAL ENGINEERING, 2024, 239
  • [8] Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery
    Zhao, Yulong
    Wang, Shixue
    Ge, Minghui
    Liang, Zhaojun
    Liang, Yifan
    Li, Yanzhe
    APPLIED ENERGY, 2019, 239 : 425 - 433
  • [9] Computational Models Analysis of Diesel Engine Exhaust Waste Heat Recovery
    Hou Xuejun
    Xiao Peng
    2012 INTERNATIONAL CONFERENCE ON ECOLOGY, WASTE RECYCLING, AND ENVIRONMENT (ICEWE 2012), 2012, 7 : 228 - 233
  • [10] Improvement of volume controlled thermal energy storage system using phase change material for exhaust waste heat recovery in a SI engine
    Gurbuz, Habib
    Aytac, Himmet Emre
    Akcay, Husameddin
    Hamamcioglu, Huseyin Cahit
    JOURNAL OF ENERGY STORAGE, 2022, 53