Hydrated WO3. 0.33H2O nanorod for an excellent anode materials enables high performance and long-cycle stability for aqueous Zn-ion batteries

被引:4
作者
Gupta, Shobhnath P. [1 ]
Kotha, Vishal [1 ]
Walke, Pravin S. [2 ]
Panchakarla, Leela S. [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Mumbai 400076, India
[2] Univ Mumbai, Natl Ctr Nanosci & Nanotechnol, NCNNUM, Mumbai 400098, India
关键词
Layered materials; Hexagonal tunnel; Nanorod; Reversible Zn-ion battery; Cyclic stability; TUNGSTEN TRIOXIDE; INTERCALATION; CHALLENGES; OXIDE;
D O I
10.1016/j.jpowsour.2024.234500
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal dissolution and solid electrolyte interface layer growth are the most challenging issues in a reversible aqueous Zn-ion battery. To address this issue, an electrolyte-material marriage must be devise. Herein, we have develop the unique hydrate WO3. 0.33H2O nanorods that integrate the layers and hexagonal tunnel structures for an aqueous Zn-ion battery. However, the one-dimensional morphology and confinement of the hydrate molecules of WO3. 0.33H2O nanorods enable the superhighway and sub-second electron transport. Owing to this unique property, WO3. 0.33H2O nanorods exhibit a capacity of 91 mAh g-1, which is two-fold higher than the three-dimensional WO3 cube in 1 M ZnCl2 electrolyte. Additionally, WO3. 0.33H2O nanorods exhibit excellent durability and coulombic efficiency of 94 % and 99 % after 3000 cycles, respectively. To further examine the electrolyte suitability, the WO3. 0.33H2O nanorods show excellent reversibility of the insertion and deinsertion of the Zn2+ ion in 1 m ZnCl2 compares to 1 M ZnSO4 and 1 M Zn(CH3COO)2 electrolytes. Therefore, this unique construction of hydrates WO3. 0.33H2O nanorods would be a new avenue for designing the anode materials for a reversible aqueous Zn-ion battery.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Lithium-ion batteries for low-temperature applications: Limiting factors and solutions [J].
Belgibayeva, Ayaulym ;
Rakhmetova, Aiym ;
Rakhatkyzy, Makpal ;
Kairova, Meruyert ;
Mukushev, Ilyas ;
Issatayev, Nurbolat ;
Kalimuldina, Gulnur ;
Nurpeissova, Arailym ;
Sun, Yang-Kook ;
Bakenov, Zhumabay .
JOURNAL OF POWER SOURCES, 2023, 557
[2]   Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode [J].
Bhoyate, Sanket ;
Mhin, Sungwook ;
Jeon, Jae-eun ;
Park, KyoungRyeol ;
Kim, Junyoung ;
Choi, Wonbong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) :27249-27257
[3]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[4]   Effects of interlayer confinement and hydration on capacitive charge storage in birnessite [J].
Boyd, Shelby ;
Ganeshan, Karthik ;
Tsai, Wan-Yu ;
Wu, Tao ;
Saeed, Saeed ;
Jiang, De-en ;
Balke, Nina ;
van Duin, Adri C. T. ;
Augustyn, Veronica .
NATURE MATERIALS, 2021, 20 (12) :1689-+
[5]   Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries [J].
Cao, Jin ;
Zhang, Dongdong ;
Yue, Yilei ;
Wang, Xiao ;
Srikhaow, Assadawoot ;
Sriprachuabwong, Chakrit ;
Tuantranont, Adisorn ;
Zhang, Xinyu ;
Wu, Zhong-Shuai ;
Qin, Jiaqian .
CHEMICAL ENGINEERING JOURNAL, 2021, 426
[6]   Synthesis and characterization of WO3 polymorphs: monoclinic, orthorhombic and hexagonal structures [J].
Chacon, Cecilia ;
Rodriguez-Perez, Manuel ;
Oskam, Gerko ;
Rodriguez-Gattorno, Geonel .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (08) :5526-5531
[7]   Hexagonal WO3/3D Porous Graphene as a Novel Zinc Intercalation Anode for Aqueous Zinc-Ion Batteries [J].
Chen, Xingfa ;
Huang, Renshu ;
Ding, Mingyu ;
He, Huibing ;
Wang, Fan ;
Yin, Shibin .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) :3961-3969
[8]   Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-Ion Batteries [J].
Cheng, Yingwen ;
Luo, Langli ;
Zhong, Li ;
Chen, Junzheng ;
Li, Bin ;
Wang, Wei ;
Mao, Scott X. ;
Wang, Chongmin ;
Sprenkle, Vincent L. ;
Li, Guosheng ;
Liu, Jun .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) :13673-13677
[9]   A NEW TUNGSTEN TRIOXIDE HYDRATE, WO3 - 1/3H2O - PREPARATION, CHARACTERIZATION, AND CRYSTALLOGRAPHIC STUDY [J].
GERAND, B ;
NOWOGROCKI, G ;
FIGLARZ, M .
JOURNAL OF SOLID STATE CHEMISTRY, 1981, 38 (03) :312-320
[10]   Highly ordered nano-tunnel structure of hydrated tungsten oxide nanorods for superior flexible quasi-solid-state hybrid supercapacitor [J].
Gupta, Shobhnath P. ;
More, Mahendra A. ;
Late, Dattatray J. ;
Walke, Pravin S. .
APPLIED SURFACE SCIENCE, 2021, 545