Enhancement of Thermal Boundary Conductance between MoS2 and Dielectric Layer by Self-Assembled Monolayers

被引:3
作者
Huang, Jian [1 ,2 ]
Yu, Xiaotong [3 ]
Wang, Xiaofeng [4 ]
Wang, Fanfan [1 ,2 ]
Liu, Zexin [5 ]
Yang, Kai [1 ,2 ]
Yue, Yue [5 ]
Li, Kangyong [1 ,2 ]
Dai, Ruiwen [4 ]
Lin, Aming [6 ]
Sun, Yiyang [6 ]
Zhao, Tianlong [7 ]
Wang, Zhiqiang [8 ]
Gao, Yuan [3 ]
Zhang, Lifu [9 ]
Chen, Dongdong [7 ]
Xin, Guoqing [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
[6] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 201899, Peoples R China
[7] Xidian Univ, Sch Microelect, Xian 710071, Peoples R China
[8] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan 430074, Peoples R China
[9] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
来源
ADVANCED ELECTRONIC MATERIALS | 2025年 / 11卷 / 03期
基金
中国国家自然科学基金;
关键词
dielectric layer; monolayer MoS2; self-assembled monolayers; thermal boundary conductance; TRANSPORT;
D O I
10.1002/aelm.202400244
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The 2D semiconductor monolayer MoS2 is expected to be a potential channel material to achieve higher miniaturization and integration in post-Moore era due to its exceptional electrical and optical properties. However, the weak van der Waals interaction between MoS2 and the dielectric substrate induces high interfacial thermal resistance and impedes the heat dissipation, leading to significant temperature rise and consequential device performance degradation. Here, self-assembled monolayers (SAM) are employed to modify the surface of dielectric SiO2 and enhance thermal boundary conductance (TBC) between MoS2 and dielectric layer. The surface roughness of dielectric SiO2 is improved by the SAM, depressing the photon scattering. More importantly, the interfacial bonding force is strengthened by the formation of chemical covalent N-Mo bonds between NH2-terminated SAM and MoS2, thus leading to a 118% TBC improvement between MoS2 and NH2-terminated SiO2 compared to pristine SiO2 substrate. Simultaneously, the current reduction caused by self-heating effect in the monolayer MoS2 field-effect transistor is eliminated and the maximum power density of the device is largely improved. The incorporation of SAM in 2D semiconductor nanoelectronics presents great potential for device thermal management and reliability improvement.
引用
收藏
页数:9
相关论文
共 57 条
[1]   High Electric Field Carrier Transport and Power Dissipation in Multilayer Black Phosphorus Field Effect Transistor with Dielectric Engineering [J].
Ahmed, Faisal ;
Kim, Young Duck ;
Choi, Min Sup ;
Liu, Xiaochi ;
Qu, Deshun ;
Yang, Zheng ;
Hu, Jiayang ;
Herman, Irving P. ;
Hone, James ;
Yoo, Won Jong .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (04)
[2]  
Ali F., 2018, ADV MATER INTERFACES, V6
[3]   Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure [J].
Azcatl, Angelica ;
Qin, Xiaoye ;
Prakash, Abhijith ;
Zhang, Chenxi ;
Cheng, Lanxia ;
Wang, Qingxiao ;
Lu, Ning ;
Kim, Moon J. ;
Kim, Jiyoung ;
Cho, Kyeongjae ;
Addou, Rafik ;
Hinkle, Christopher L. ;
Appenzeller, Joerg ;
Wallace, Robert M. .
NANO LETTERS, 2016, 16 (09) :5437-5443
[4]   Ballistic to diffusive crossover of heat flow in graphene ribbons [J].
Bae, Myung-Ho ;
Li, Zuanyi ;
Aksamija, Zlatan ;
Martin, Pierre N. ;
Xiong, Feng ;
Ong, Zhun-Yong ;
Knezevic, Irena ;
Pop, Eric .
NATURE COMMUNICATIONS, 2013, 4
[5]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[6]   Defect-engineered room temperature negative differential resistance in monolayer MoS2 transistors [J].
Chang, Wen-Hao ;
Lu, Chun-, I ;
Yang, Tilo H. ;
Yang, Shu-Ting ;
Simbulan, Kristan Bryan ;
Lin, Chih-Pin ;
Hsieh, Shang-Hsien ;
Chen, Jyun-Hong ;
Li, Kai-Shin ;
Chen, Chia-Hao ;
Hou, Tuo-Hung ;
Lu, Ting-Hua ;
Lan, Yann-Wen .
NANOSCALE HORIZONS, 2022, 7 (12) :1533-1539
[7]   Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film [J].
Chien, Heng-Chieh ;
Yao, Da-Jeng ;
Huang, Mei-Jiau ;
Chang, Tien-Yao .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (05)
[8]   Ultralow thermal conductivity in disordered, layered WSe2 crystals [J].
Chiritescu, Catalin ;
Cahill, David G. ;
Nguyen, Ngoc ;
Johnson, David ;
Bodapati, Arun ;
Keblinski, Pawel ;
Zschack, Paul .
SCIENCE, 2007, 315 (5810) :351-353
[9]   CONSEQUENCES OF MICROSCOPIC SURFACE-ROUGHNESS FOR MOLECULAR SELF-ASSEMBLY [J].
CREAGER, SE ;
HOCKETT, LA ;
ROWE, GK .
LANGMUIR, 1992, 8 (03) :854-861
[10]   Substrate-dependence of monolayer MoS2 thermal conductivity and thermal boundary conductance [J].
Gabourie, Alexander J. ;
Koroglu, Cagil ;
Pop, Eric .
JOURNAL OF APPLIED PHYSICS, 2022, 131 (19)