Combining kernelised autoencoding and centroid prediction for dynamic multi-objective optimisation

被引:0
|
作者
Hou, Zhanglu [1 ,2 ]
Zou, Juan [1 ,2 ]
Ruan, Gan [3 ]
Liu, Yuan [1 ,2 ]
Xia, Yizhang [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Engn Res Ctr Intelligent Syst Optimizat & Se, Key Lab Intelligent Comp & Informat Proc, Minist Educ China, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Key Lab Hunan Prov Internet Things & Informat Secu, Xiangtan, Hunan, Peoples R China
[3] Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham, England
基金
中国国家自然科学基金;
关键词
multi-objective optimisation; optimisation; EVOLUTIONARY SEARCH; ALGORITHM;
D O I
10.1049/cit2.12335
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms face significant challenges when dealing with dynamic multi-objective optimisation because Pareto optimal solutions and/or Pareto optimal fronts change. The authors propose a unified paradigm, which combines the kernelised autoncoding evolutionary search and the centroid-based prediction (denoted by KAEP), for solving dynamic multi-objective optimisation problems (DMOPs). Specifically, whenever a change is detected, KAEP reacts effectively to it by generating two subpopulations. The first subpopulation is generated by a simple centroid-based prediction strategy. For the second initial subpopulation, the kernel autoencoder is derived to predict the moving of the Pareto-optimal solutions based on the historical elite solutions. In this way, an initial population is predicted by the proposed combination strategies with good convergence and diversity, which can be effective for solving DMOPs. The performance of the proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems. Empirical results fully demonstrate the superiority of the proposed method on most test instances.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Multi-objective tunicate search optimisation algorithm for numerical problems
    Kumar, Vijay
    Sharma, Isha
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2022, 10 (02) : 119 - 144
  • [32] Improved solutions to a TEAM problem for multi-objective optimisation in magnetics
    Di Barba, Paolo
    Mognaschi, Maria Evelina
    Lowther, David A.
    Sykulski, Jan K.
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2020, 14 (08) : 964 - 968
  • [33] On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems
    Preuss, Oliver Ludger
    Rook, Jeroen
    Trautmann, Heike
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 305 - 321
  • [34] Multi-objective Optimisation of Power Restoration in Electricity Distribution Systems
    Mendes, Alexandre
    Boland, Natashia
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 779 - +
  • [35] Multi-objective optimisation of sewer maintenance scheduling
    Draude, Sabrina
    Keedwell, Ed
    Kapelan, Zoran
    Hiscock, Rebecca
    JOURNAL OF HYDROINFORMATICS, 2022, 24 (03) : 574 - 589
  • [36] Multi-objective optimisation of batch distillation processes
    Barakat, Tajalasfia M.
    Fraga, Eric S.
    Sorensen, Eva
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 955 - 960
  • [37] Stochastic Multi-objective Optimisation of Exoskeleton Structures
    Anna Reggio
    Rita Greco
    Giuseppe Carlo Marano
    Giuseppe Andrea Ferro
    Journal of Optimization Theory and Applications, 2020, 187 : 822 - 841
  • [38] Multi-objective optimisation of batch separation processes
    Barakat, Tajalasfia M. M.
    Fraga, Eric S.
    Sorensen, Eva
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2008, 47 (12) : 2303 - 2314
  • [39] Multi-objective optimisation under deep uncertainty
    Babooshka Shavazipour
    Theodor J. Stewart
    Operational Research, 2021, 21 : 2459 - 2487
  • [40] Multi-objective design optimisation for PMSLM by FITM
    Dong, Fei
    Song, Juncai
    Zhao, Jiwen
    Zhao, Jing
    IET ELECTRIC POWER APPLICATIONS, 2018, 12 (02) : 188 - 194