Combining kernelised autoencoding and centroid prediction for dynamic multi-objective optimisation

被引:0
|
作者
Hou, Zhanglu [1 ,2 ]
Zou, Juan [1 ,2 ]
Ruan, Gan [3 ]
Liu, Yuan [1 ,2 ]
Xia, Yizhang [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Engn Res Ctr Intelligent Syst Optimizat & Se, Key Lab Intelligent Comp & Informat Proc, Minist Educ China, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Key Lab Hunan Prov Internet Things & Informat Secu, Xiangtan, Hunan, Peoples R China
[3] Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham, England
基金
中国国家自然科学基金;
关键词
multi-objective optimisation; optimisation; EVOLUTIONARY SEARCH; ALGORITHM;
D O I
10.1049/cit2.12335
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms face significant challenges when dealing with dynamic multi-objective optimisation because Pareto optimal solutions and/or Pareto optimal fronts change. The authors propose a unified paradigm, which combines the kernelised autoncoding evolutionary search and the centroid-based prediction (denoted by KAEP), for solving dynamic multi-objective optimisation problems (DMOPs). Specifically, whenever a change is detected, KAEP reacts effectively to it by generating two subpopulations. The first subpopulation is generated by a simple centroid-based prediction strategy. For the second initial subpopulation, the kernel autoencoder is derived to predict the moving of the Pareto-optimal solutions based on the historical elite solutions. In this way, an initial population is predicted by the proposed combination strategies with good convergence and diversity, which can be effective for solving DMOPs. The performance of the proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems. Empirical results fully demonstrate the superiority of the proposed method on most test instances.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Evolutionary Multi-objective Optimisation in Neurotrajectory Prediction
    Galvan, Edgar
    Stapleton, Fergal
    APPLIED SOFT COMPUTING, 2023, 146
  • [2] Evolutionary Dynamic Multi-objective Optimisation: A Survey
    Jiang, Shouyong
    Zou, Juan
    Yang, Shengxiang
    Yao, Xin
    ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [3] Dynamic multi-objective optimisation for machining gradient materials
    Roy, R.
    Mehnen, J.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2008, 57 (01) : 429 - 432
  • [4] Bat algorithm for multi-objective optimisation
    Yang, Xin-She
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (05) : 267 - 274
  • [5] Dynamic trajectory generation via numerical multi-objective optimisation
    Seyr, Martin
    Jakubek, Stefan
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 83 - 88
  • [6] Multi-objective optimisation with uncertainty
    Jones, P
    Tiwari, A
    Roy, R
    Corbett, J
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, 2004, : 114 - 119
  • [7] The Effect of Epigenetic Blocking on Dynamic Multi-Objective Optimisation Problems
    Yuen, Sizhe
    Ezard, Thomas H. G.
    Sobey, Adam J.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 379 - 382
  • [8] Stochastic Multi-objective Optimisation of Exoskeleton Structures
    Reggio, Anna
    Greco, Rita
    Marano, Giuseppe Carlo
    Ferro, Giuseppe Andrea
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 187 (03) : 822 - 841
  • [9] Multi-objective optimisation in scientific workflow.
    Hoang Anh Nguyen
    Van Iperen, Zane
    Raghunath, Sreekanth
    Abramson, David
    Kipouros, Timoleon
    Somasekharan, Sandeep
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 1443 - 1452
  • [10] Multi-objective optimisation of aircraft departure trajectories
    Zhang, Mengying
    Filippone, Antonio
    Bojdo, Nicholas
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 79 : 37 - 47