Scalar's quasibound states in cosmological black hole background

被引:2
作者
Senjaya, David [1 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Phys, High Energy Phys Theory Grp, 254 Phayathai Rd, Bangkok 10330, Thailand
关键词
Black hole; de-Sitter space-time; Klein-Gordon equation; Quasibound states; NORMAL-MODES; FREQUENCIES;
D O I
10.1016/j.jheap.2024.07.004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this letter, we present in detail a novel exact solution of scalar quasibound states of a static spherically symmetric Schwarzschild de Sitter black hole. We investigate and work out the governing covariant scalar field wave equation, i.e., the Klein-Gordon equation and isolate the radial equation. In this letter, we show in detail, the derivation of the successfully obtained exact radial wave solutions which are expressed in terms of General Heun functions. Having the exact solutions in hand, the energy levels expression is obtained from special function's polynomial condition. In the last part, the Hawking radiation is investigated via the Damour-Ruffini method and the Hawking temperature is obtained from radiation distribution function.
引用
收藏
页码:132 / 139
页数:8
相关论文
共 41 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Anomalous decay rate of quasinormal modes in Schwarzschild-dS and Schwarzschild-AdS black holes [J].
Aragon, Almendra ;
Gonzalez, P. A. ;
Papantonopoulos, Eleftherios ;
Vasquez, Yerko .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)
[3]   Discovering the QCD axion with black holes and gravitational waves [J].
Arvanitaki, Asimina ;
Baryakhtar, Masha ;
Huang, Xinlu .
PHYSICAL REVIEW D, 2015, 91 (08)
[4]   Gravitational energy loss in high energy particle collisions:: Ultrarelativistic plunge into a multidimensional black hole -: art. no. 124011 [J].
Berti, E ;
Cavaglià, M ;
Gualtieri, L .
PHYSICAL REVIEW D, 2004, 69 (12)
[5]   Asymptotic quasinormal frequencies of d-dimensional Schwarzschild black holes [J].
Birmingham, D .
PHYSICS LETTERS B, 2003, 569 (3-4) :199-203
[6]  
Boisvert R., 2010, NIST Handbook of Mathematical Functions
[7]   Asymptotic quasinormal modes of d-dimensional schwarzschild black hole with Gauss-Bonnet correction [J].
Chakrabarti, Sayan K. ;
Gupta, Kumar S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (17) :3565-3574
[8]   Quasinormal modes of the extremal BTZ black hole [J].
Crisóstomo, J ;
Lepe, S ;
Saavedra, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (12) :2801-2809
[9]   BLACK-HOLE EVAPORATION IN KLEIN-SAUTER-HEISENBERG-EULER FORMALISM [J].
DAMOUR, T ;
RUFFINI, R .
PHYSICAL REVIEW D, 1976, 14 (02) :332-334
[10]  
Einstein A, 1917, SITZBER K PREUSS AKA, P142