Mutual exclusivity as a challenge for deep neural networks

被引:0
|
作者
Gandhi, Kanishk [1 ]
Lake, Brenden [2 ]
机构
[1] New York Univ, New York, NY 10012 USA
[2] New York Univ, Facebook AI Res, New York, NY USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
关键词
WORD; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Strong inductive biases allow children to learn in fast and adaptable ways. Children use the mutual exclusivity (ME) bias to help disambiguate how words map to referents, assuming that if an object has one label then it does not need another. In this paper, we investigate whether or not vanilla neural architectures have an ME bias, demonstrating that they lack this learning assumption. Moreover, we show that their inductive biases are poorly matched to lifelong learning formulations of classification and translation. We demonstrate that there is a compelling case for designing task-general neural networks that learn through mutual exclusivity, which remains an open challenge.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] MuICE: Mutual Influence and Citation Exclusivity Author Rank
    Amjad, Tehmina
    Daud, Ali
    Che, Dunren
    Akram, Atia
    INFORMATION PROCESSING & MANAGEMENT, 2016, 52 (03) : 374 - 386
  • [2] Deep Polynomial Neural Networks
    Chrysos, Grigorios G.
    Moschoglou, Stylianos
    Bouritsas, Giorgos
    Deng, Jiankang
    Panagakis, Yannis
    Zafeiriou, Stefanos
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4021 - 4034
  • [3] The role of developmental change and linguistic experience in the mutual exclusivity effect
    Lewis, Molly
    Cristiano, Veronica
    Lake, Brenden M.
    Kwan, Tammy
    Frank, Michael C.
    COGNITION, 2020, 198
  • [4] Texture and art with deep neural networks
    Gatys, Leon A.
    Ecker, Alexander S.
    Bethge, Matthias
    CURRENT OPINION IN NEUROBIOLOGY, 2017, 46 : 178 - 186
  • [5] Deep Neural Networks for Ultrasound Beamforming
    Luchies, Adam
    Byram, Brett
    2017 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2017,
  • [6] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [7] Visual Attention with Deep Neural Networks
    Canziani, Alfredo
    Culurciello, Eugenio
    2015 49TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2015,
  • [8] A survey of uncertainty in deep neural networks
    Gawlikowski, Jakob
    Tassi, Cedrique Rovile Njieutcheu
    Ali, Mohsin
    Lee, Jongseok
    Humt, Matthias
    Feng, Jianxiang
    Kruspe, Anna
    Triebel, Rudolph
    Jung, Peter
    Roscher, Ribana
    Shahzad, Muhammad
    Yang, Wen
    Bamler, Richard
    Zhu, Xiao Xiang
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1513 - 1589
  • [9] A Survey on Fuzzy Deep Neural Networks
    Das, Rangan
    Sen, Sagnik
    Maulik, Ujjwal
    ACM COMPUTING SURVEYS, 2020, 53 (03)
  • [10] Deep Neural Networks for Ultrasound Beamforming
    Luchies, Adam C.
    Byram, Brett C.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (09) : 2010 - 2021