Tailoring the Reaction Pathway for Control of Size and Composition of Silver-Gold Alloy Nanoparticles

被引:4
作者
Traore, Nabi E. [1 ,2 ]
Berthold, Michelle [1 ]
Hartmann, Lukas [1 ,2 ]
Schmul, Patricia [1 ]
Apeleo Zubiri, Benjamin [3 ,4 ]
Spiecker, Erdmann [3 ,4 ]
Peukert, Wolfgang [1 ,2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Particle Technol LFG, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Interdisciplinary Ctr Funct Particle Syst FPS, D-91058 Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Inst Micro & Nanostruct Res IMN, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Ctr Nanoanal & Electron Microscopy CENEM, Interdisciplinary Ctr Nanostruct Films IZNF, D-91058 Erlangen, Germany
关键词
AU; AG; MECHANISM; OXIDATION; CITRATE; MODEL; PRECIPITATION; NANOALLOYS; REDUCTION; NANORODS;
D O I
10.1021/acs.jpcc.4c00321
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we independently tune both the particle size and the chemical composition of bimetallic silver-gold alloy nanoparticles (NPs) by carefully controlling the reaction pathway. NP synthesis involves control of the supersaturation profile in time and space. For the reaction-controlled case, this supersaturation profile is determined by a network of reactions leading to the buildup of the monomer concentration. Using a variety of characterization tools, we show how the process conditions influence the coupled reactions in the complex formation mechanism of Ag-Au alloy NPs. Applying a simple mass balance allows for the independent control of size and chemical composition of these NPs, yielding particles with constant composition and varying size in the range of 20 to 40 nm. A series of constant sizes and varying chemical compositions in the range of 10% to 100% molar gold content is also possible. Our new methodology shows an example of how reaction networks can be tailored to achieve targeted NP properties and paves the way for better control in the synthesis of multicomponent NPs.
引用
收藏
页码:8660 / 8671
页数:12
相关论文
共 63 条
[1]   Cytotoxicity Evaluation and Magnetic Characteristics of Mechano-thermally Synthesized CuNi Nanoparticles for Hyperthermia [J].
Amrollahi, P. ;
Ataie, A. ;
Nozari, A. ;
Seyedjafari, E. ;
Shafiee, A. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (03) :1220-1225
[2]   Electrochemical codeposition of silver-gold nanoparticles on CNT-based electrode and their performance in electrocatalysis of dopamine [J].
Arvinte, Adina ;
Crudu, Irina-Alexandra ;
Doroftei, Florica ;
Timpu, Daniel ;
Pinteala, Mariana .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 829 :184-193
[3]   Efficient quenching sheds light on early stages of gold nanoparticle formation [J].
Biegel, Markus ;
Schikarski, Tobias ;
Cardenas Lopez, Paola ;
Gromotka, Lukas ;
Luebbert, Christian ;
Voelkl, Andreas ;
Damm, Cornelia ;
Walter, Johannes ;
Peukert, Wolfgang .
RSC ADVANCES, 2023, 13 (26) :18001-18013
[4]   Unraveling Structural Information of Turkevich Synthesized Plasmonic Gold-Silver Bimetallic Nanoparticles [J].
Blommaerts, Natan ;
Vanrompay, Hans ;
Nuti, Silvia ;
Lenaerts, Silvia ;
Bals, Sara ;
Verbruggen, Sammy W. .
SMALL, 2019, 15 (42)
[5]  
Bohren C. F., 1983, ABSORPTION SCATTERIN, DOI DOI 10.1002/9783527618156
[6]   A new approach for the formation of alloy nanoparticles: laser synthesis of gold-silver alloy from gold-silver colloidal mixtures [J].
Chen, YH ;
Yeh, CS .
CHEMICAL COMMUNICATIONS, 2001, (04) :371-372
[7]  
Daima H. K., 2011, 2011 INT C NAN TECHN
[8]  
Devamani R.H.P., 2013, Nano Biomed. Eng, V5, P116, DOI DOI 10.5101/NBE.V5I3.P116-120
[9]   Synthesis of Precision Gold Nanoparticles Using Turkevich Method [J].
Dong, Jiaqi ;
Carpinone, Paul L. ;
Pyrgiotakis, Georgios ;
Demokritou, Philip ;
Moudgil, Brij M. .
KONA POWDER AND PARTICLE JOURNAL, 2020, 37 (37) :224-232
[10]   Bimetallic nanoalloys in heterogeneous catalysis of industrially important reactions: synergistic effects and structural organization of active components [J].
Ellert, O. G. ;
Tsodikov, M. V. ;
Nikolaev, S. A. ;
Novotortsev, V. M. .
RUSSIAN CHEMICAL REVIEWS, 2014, 83 (08) :718-732