Enhanced multimodal emotion recognition in healthcare analytics: A deep learning based model-level fusion approach

被引:3
|
作者
Islam, Md. Milon [1 ]
Nooruddin, Sheikh [1 ]
Karray, Fakhri [1 ,2 ]
Muhammad, Ghulam [3 ]
机构
[1] Univ Waterloo, Ctr Pattern Anal & Machine Intelligence, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Mohamed bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
Multimodal emotion recognition; Depthwise separable convolutional neural; networks; Bi-directional long short-term memory; Soft attention; Healthcare analytics; CLASSIFICATION;
D O I
10.1016/j.bspc.2024.106241
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning techniques have drawn considerable interest in emotion recognition due to recent technological developments in healthcare analytics. Automatic patient emotion recognition can assist healthcare analytics by providing feedback to the stakeholders of competent healthcare about the conditions of the patients and their satisfaction levels. In this paper, we propose a novel model -level fusion technique based on deep learning for enhanced emotion recognition from multimodal signals to monitor patients in connected healthcare. The representative visual features from the video signals are extracted through the Depthwise Separable Convolution Neural Network, and the optimized temporal attributes are derived from the multiple physiological data utilizing Bi-directional Long Short -Term Memory. A soft attention method fused the high multimodal features obtained from the two data modalities to retrieve the most significant features by focusing on emotionally salient parts of the features. We exploited two face detection methods, Histogram of Oriented Gradients and Convolutional Neural Network -based face detector (ResNet-34), to observe the effects of facial features on emotion recognition. Lastly, extensive experimental evaluations have been conducted using the widely used Bio Vid Emo DB multimodal dataset to verify the performance of the proposed architecture. Experimental results show that the developed fusion architecture improved the accuracy of emotion recognition from multimodal signals and outperformed the performance of both state-of-the-art techniques and baseline methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A novel multimodal EEG-image fusion approach for emotion recognition: introducing a multimodal KMED dataset
    Bahar Hatipoglu Yilmaz
    Cemal Kose
    Cagatay Murat Yilmaz
    Neural Computing and Applications, 2025, 37 (6) : 5187 - 5202
  • [32] Speech Expression Multimodal Emotion Recognition Based on Deep Belief Network
    Liu, Dong
    Chen, Longxi
    Wang, Zhiyong
    Diao, Guangqiang
    JOURNAL OF GRID COMPUTING, 2021, 19 (02)
  • [33] Speech Expression Multimodal Emotion Recognition Based on Deep Belief Network
    Dong Liu
    Longxi Chen
    Zhiyong Wang
    Guangqiang Diao
    Journal of Grid Computing, 2021, 19
  • [34] A Deep-Learning-Based Multimodal Data Fusion Framework for Urban Region Function Recognition
    Yu, Mingyang
    Xu, Haiqing
    Zhou, Fangliang
    Xu, Shuai
    Yin, Hongling
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (12)
  • [35] Music Emotion Recognition Based on Deep Learning: A Review
    Jiang, Xingguo
    Zhang, Yuchao
    Lin, Guojun
    Yu, Ling
    IEEE ACCESS, 2024, 12 : 157716 - 157745
  • [36] Uncovering Human Multimodal Activity Recognition with a Deep Learning Approach
    Ranieri, Caetano M.
    Vargas, Patricia A.
    Romero, Roseli A. F.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [37] Deep Learning Approach for Emotion Recognition Analysis in Text Streams
    Liu, Changxiu
    Kirubakaran, S.
    Daniel, Alfred J.
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2022, 18 (02)
  • [38] EEG emotion recognition based on the TimesNet fusion model
    Han, Luyao
    Zhang, Xiangliang
    Yin, Jibin
    APPLIED SOFT COMPUTING, 2024, 159
  • [39] Enhanced Recognition of Amputated Wrist and Hand Movements by Deep Learning Method Using Multimodal Fusion of Electromyography and Electroencephalography
    Kim, Sehyeon
    Shin, Dae Youp
    Kim, Taekyung
    Lee, Sangsook
    Hyun, Jung Keun
    Park, Sung-Min
    SENSORS, 2022, 22 (02)
  • [40] Multimodal Emotion Recognition With Transformer-Based Self Supervised Feature Fusion
    Siriwardhana, Shamane
    Kaluarachchi, Tharindu
    Billinghurst, Mark
    Nanayakkara, Suranga
    IEEE ACCESS, 2020, 8 (08): : 176274 - 176285