Enhanced multimodal emotion recognition in healthcare analytics: A deep learning based model-level fusion approach

被引:3
|
作者
Islam, Md. Milon [1 ]
Nooruddin, Sheikh [1 ]
Karray, Fakhri [1 ,2 ]
Muhammad, Ghulam [3 ]
机构
[1] Univ Waterloo, Ctr Pattern Anal & Machine Intelligence, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Mohamed bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
Multimodal emotion recognition; Depthwise separable convolutional neural; networks; Bi-directional long short-term memory; Soft attention; Healthcare analytics; CLASSIFICATION;
D O I
10.1016/j.bspc.2024.106241
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning techniques have drawn considerable interest in emotion recognition due to recent technological developments in healthcare analytics. Automatic patient emotion recognition can assist healthcare analytics by providing feedback to the stakeholders of competent healthcare about the conditions of the patients and their satisfaction levels. In this paper, we propose a novel model -level fusion technique based on deep learning for enhanced emotion recognition from multimodal signals to monitor patients in connected healthcare. The representative visual features from the video signals are extracted through the Depthwise Separable Convolution Neural Network, and the optimized temporal attributes are derived from the multiple physiological data utilizing Bi-directional Long Short -Term Memory. A soft attention method fused the high multimodal features obtained from the two data modalities to retrieve the most significant features by focusing on emotionally salient parts of the features. We exploited two face detection methods, Histogram of Oriented Gradients and Convolutional Neural Network -based face detector (ResNet-34), to observe the effects of facial features on emotion recognition. Lastly, extensive experimental evaluations have been conducted using the widely used Bio Vid Emo DB multimodal dataset to verify the performance of the proposed architecture. Experimental results show that the developed fusion architecture improved the accuracy of emotion recognition from multimodal signals and outperformed the performance of both state-of-the-art techniques and baseline methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Deep learning based multimodal emotion recognition using model-level fusion of audio–visual modalities
    Middya A.I.
    Nag B.
    Roy S.
    Knowledge-Based Systems, 2022, 244
  • [2] Deep learning based multimodal emotion recognition using model-level fusion of audio-visual modalities
    Middya, Asif Iqbal
    Nag, Baibhav
    Roy, Sarbani
    KNOWLEDGE-BASED SYSTEMS, 2022, 244
  • [3] Deep learning based multimodal emotion recognition using model-level fusion of audio-visual modalities
    Middya, Asif Iqbal
    Nag, Baibhav
    Roy, Sarbani
    KNOWLEDGE-BASED SYSTEMS, 2022, 244
  • [4] Comparing Recognition Performance and Robustness of Multimodal Deep Learning Models for Multimodal Emotion Recognition
    Liu, Wei
    Qiu, Jie-Lin
    Zheng, Wei-Long
    Lu, Bao-Liang
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (02) : 715 - 729
  • [5] A Deep Learning Based Predictive Model for Healthcare Analytics
    Nguyen Duy Thong Tran
    Leung, Carson K.
    Madill, Evan W. R.
    Phan Thai Binh
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 547 - 549
  • [6] Emotion Recognition Using Multimodal Deep Learning
    Liu, Wei
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 521 - 529
  • [7] An efficient model-level fusion approach for continuous affect recognition from audiovisual signals
    Pei, Ercheng
    Jiang, Dongmei
    Sahli, Hichem
    NEUROCOMPUTING, 2020, 376 : 42 - 53
  • [8] Feature Fusion for Multimodal Emotion Recognition Based on Deep Canonical Correlation Analysis
    Zhang, Ke
    Li, Yuanqing
    Wang, Jingyu
    Wang, Zhen
    Li, Xuelong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1898 - 1902
  • [9] Uncertainty-Based Learning of a Lightweight Model for Multimodal Emotion Recognition
    Radoi, Anamaria
    Cioroiu, George
    IEEE ACCESS, 2024, 12 : 120362 - 120374
  • [10] A Novel Approach for Emotion Recognition Based on EEG Signal Using Deep Learning
    Abdulrahman, Awf
    Baykara, Muhammet
    Alakus, Talha Burak
    APPLIED SCIENCES-BASEL, 2022, 12 (19):