A cautionary tale on the effects of different covariance structures in linear mixed effects modeling of fMRI data

被引:0
作者
van der Horn, Harm Jan [1 ]
Erhardt, Erik B. [2 ]
Dodd, Andrew B. [1 ]
Nathaniel, Upasana [1 ]
Wick, Tracey V. [1 ]
Mcquaid, Jessica R. [1 ]
Ryman, Sephira G. [1 ]
Vakhtin, Andrei A. [1 ]
Meier, Timothy B. [3 ,4 ,5 ]
Mayer, Andrew R. [1 ,6 ,7 ,8 ,9 ]
机构
[1] LBERI, Mind Res Network, Albuquerque, NM USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM USA
[3] Med Coll Wisconsin, Dept Neurosurg, Milwaukee, WI USA
[4] Med Coll Wisconsin, Dept Cell Biol Neurobiol & Anat, Milwaukee, WI USA
[5] Med Coll Wisconsin, Dept Biomed Engn, Milwaukee, WI USA
[6] Univ New Mexico, Dept Psychiat & Behav Sci, Albuquerque, NM USA
[7] Univ New Mexico, Dept Psychol, Albuquerque, NM USA
[8] Univ New Mexico, Dept Neurol, Albuquerque, NM USA
[9] Mind Res Network, Pete & Nancy Domen Hall,1101 Yale Blvd NE, Albuquerque, NM 87106 USA
基金
美国国家卫生研究院;
关键词
cognitive neuroscience; covariance; fMRI; linear mixed models; TRAUMATIC BRAIN-INJURY;
D O I
10.1002/hbm.26699
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
With the steadily increasing abundance of longitudinal neuroimaging studies with large sample sizes and multiple repeated measures, questions arise regarding the appropriate modeling of variance and covariance. The current study examined the influence of standard classes of variance-covariance structures in linear mixed effects (LME) modeling of fMRI data from patients with pediatric mild traumatic brain injury (pmTBI; N = 181) and healthy controls (N = 162). During two visits, participants performed a cognitive control fMRI paradigm that compared congruent and incongruent stimuli. The hemodynamic response function was parsed into peak and late peak phases. Data were analyzed with a 4-way (GROUPxVISITxCONGRUENCYxPHASE) LME using AFNI's 3dLME and compound symmetry (CS), autoregressive process of order 1 (AR1), and unstructured (UN) variance-covariance matrices. Voxel-wise results dramatically varied both within the cognitive control network (UN>CS for CONGRUENCY effect) and broader brain regions (CS>UN for GROUP:VISIT) depending on the variance-covariance matrix that was selected. Additional testing indicated that both model fit and estimated standard error were superior for the UN matrix, likely as a result of the modeling of individual terms. In summary, current findings suggest that the interpretation of results from complex designs is highly dependent on the selection of the variance-covariance structure using LME modeling.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] Random effects structure for confirmatory hypothesis testing: Keep it maximal
    Barr, Dale J.
    Levy, Roger
    Scheepers, Christoph
    Tily, Harry J.
    [J]. JOURNAL OF MEMORY AND LANGUAGE, 2013, 68 (03) : 255 - 278
  • [2] Box G.E.P., 1994, Time Series Analysis: Forecasting and Control, Vthird
  • [3] Linear mixed-effects modeling approach to FMRI group analysis
    Chen, Gang
    Saad, Ziad S.
    Britton, Jennifer C.
    Pine, Daniel S.
    Cox, Robert W.
    [J]. NEUROIMAGE, 2013, 73 : 176 - 190
  • [4] The cognitive control network: Integrated cortical regions with dissociable functions
    Cole, Michael W.
    Schneider, Walter
    [J]. NEUROIMAGE, 2007, 37 (01) : 343 - 360
  • [5] FMRI Clustering in AFNI: False-Positive Rates Redux
    Cox, Robert W.
    Chen, Gang
    Glen, Daniel R.
    Reynolds, Richard C.
    Taylor, Paul A.
    [J]. BRAIN CONNECTIVITY, 2017, 7 (03) : 152 - 171
  • [6] AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
    Cox, RW
    [J]. COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03): : 162 - 173
  • [7] White Matter Disruption in Pediatric Traumatic Brain Injury Results From ENIGMA Pediatric Moderate to Severe Traumatic Brain Injury
    Dennis, Emily L.
    Caeyenberghs, Karen
    Hoskinson, Kristen R.
    Merkley, Tricia L.
    Suskauer, Stacy J.
    Asarnow, Robert F.
    Babikian, Talin
    Bartnik-Olson, Brenda
    Bickart, Kevin
    Bigler, Erin D.
    Ewing-Cobbs, Linda
    Figaji, Anthony
    Giza, Christopher C.
    Goodrich-Hunsaker, Naomi J.
    Hodges, Cooper B.
    Hovenden, Elizabeth S.
    Irimia, Andrei
    Konigs, Marsh
    Levin, Harvey S.
    Lindsey, Hannah M.
    Max, Jeffrey E.
    Newsome, Mary R.
    Olsen, Alexander
    Ryan, Nicholas P.
    Schmidt, Adam T.
    Spruiell, Matthew S.
    Wade, Benjamin S. C.
    Ware, Ashley L.
    Watson, Christopher G.
    Wheeler, Anne L.
    Yeates, Keith Owen
    Zielinski, Brandon A.
    Kochunov, Peter
    Jahanshad, Neda
    Thompson, Paul M.
    Tate, David F.
    Wilde, Elisabeth A.
    [J]. NEUROLOGY, 2021, 97 (03) : E298 - E309
  • [8] Longitudinal diffusion tensor imaging after pediatric traumatic brain injury: Impact of age at injury and time since injury on pathway integrity
    Ewing-Cobbs, Linda
    Johnson, Chad Parker
    Juranek, Jenifer
    DeMaster, Dana
    Prasad, Mary
    Duque, Gerardo
    Kramer, Larry
    Cox, Charles S.
    Swank, Paul R.
    [J]. HUMAN BRAIN MAPPING, 2016, 37 (11) : 3929 - 3945
  • [9] Jahn Holger, 2013, Dialogues Clin Neurosci, V15, P445
  • [10] RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA
    LAIRD, NM
    WARE, JH
    [J]. BIOMETRICS, 1982, 38 (04) : 963 - 974