Numerical simulations on the enhancement of the signal-to-noise ratio by using a vector vortex beam with polarization modulation in LIDAR applications

被引:2
作者
Wei, Lude [1 ]
Zhou, Yifan [2 ]
Li, Xiang
Zhang, Qinlang [2 ]
Zhang, Tianpei [1 ]
Hu, Di [1 ]
Zhang, Qixiong
Zhang, Wei [1 ]
Wang, Xuan [2 ,3 ]
机构
[1] Hubei Univ, Sch Microelect, Wuhan 430062, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[3] Wuhan Inst Quantum Technol, Wuhan 430206, Peoples R China
基金
中国国家自然科学基金;
关键词
Vector vortex; Laser remote sensing; Spatial separation; Lidar; ORBITAL ANGULAR-MOMENTUM; RAMAN LIDAR; GENERATION; SYSTEM;
D O I
10.1016/j.optlastec.2024.111216
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Vortex beams have the significance to enhance the performance of lidar (light detection and ranging). We propose a simulation model that uses the vector vortex beam with polarization modulation to separate background and multiple-scattered signals from the signals reflected back from a target. Numerical simulations show that when the vortex retarder was placed in the simulation model, the signal-to-noise ratio (SNR) was improved by blocking the multiple-scattered signals. The background and multiple-scattered signals (incoherent light) show a spot-like distribution at the center on the image plane. The single-scattered signals (coherent light) form a ring-shaped intensity distribution. Thus, we can use an annular aperture to filter out the incoherent part. The simulation models can help design better performing lidar instruments and optical communication systems. The optical vortex can be used for optical filtering of underwater exploration, and optical communication.
引用
收藏
页数:9
相关论文
共 43 条
[11]   Polarization effect of a Gaussian laser pulse on magnetic field influenced electron acceleration in vacuum [J].
Ghotra, Harjit Singh ;
Kant, Niti .
OPTICS COMMUNICATIONS, 2016, 365 :231-236
[12]   A mean shift segmentation morphological filter for airborne LiDAR DTM extraction under forest canopy [J].
Hui, Zhenyang ;
Jin, Shuanggen ;
Xia, Yuanping ;
Nie, Yunju ;
Xie, Xiaowei ;
Li, Na .
OPTICS AND LASER TECHNOLOGY, 2021, 136
[13]  
Illig DW, 2013, OCEANS-IEEE
[14]   Creation of two vortex-entangled beams in a vortex-beam collision with a plane wave [J].
Ivanov, Igor P. .
PHYSICAL REVIEW A, 2012, 85 (03)
[15]   Enhanced underwater ranging using an optical vortex [J].
Jantzi, Austin ;
Jemison, William ;
Laux, Alan ;
Mullen, Linda ;
Cochenour, Brandon .
OPTICS EXPRESS, 2018, 26 (03) :2668-2674
[16]   Lidar-radar for underwater target detection using a modulated sub-nanosecond Q-switched laser [J].
Li, Guangying ;
Zhou, Qiang ;
Xu, Guoquan ;
Wang, Xing ;
Han, Wenjie ;
Wang, Jiang ;
Zhang, Guodong ;
Zhang, Yifan ;
Yuan, Zhi'an ;
Song, Sijia ;
Gu, Shangtai ;
Chen, Fubin ;
Xu, Ke ;
Tian, Jinshou ;
Wan, Jianwei ;
Xie, Xiaoping ;
Cheng, Guanghua .
OPTICS AND LASER TECHNOLOGY, 2021, 142
[17]   All-graphene geometric terahertz metasurfaces for generating multi-dimensional focused vortex beams [J].
Li, Hui ;
Zheng, Chenglong ;
Xu, Hang ;
Li, Jie ;
Song, Chunyu ;
Yang, Fan ;
Li, Jitao ;
Shi, Wei ;
Zhang, Yating ;
Yao, Jianquan .
OPTICS AND LASER TECHNOLOGY, 2023, 159
[18]   Generation of fractional and ultra-high polarization-order vector vortex beams on hybrid-order Poincare spheres [J].
Li, Ruijian ;
Ren, Yuan ;
Sun, Rusheng ;
Zhao, Jie ;
Wang, Chen ;
Liu, Zhengliang ;
Liu, Tong .
OPTICS AND LASER TECHNOLOGY, 2023, 164
[19]   Separation of coherent and incoherent light by using optical vortex via spatial mode projection [J].
Li, Xiang ;
Wang, Xuan ;
Yi, Yang ;
Zhou, Yifan ;
Chen, Qianyuan ;
Wang, Anzhou ;
Mao, Song ;
Yan, Yuqi .
OPTICS COMMUNICATIONS, 2023, 527
[20]   Ranging accuracy improvement by using a spiral phase plate in a time-of-flight underwater lidar system [J].
Liao, Yingqi ;
Yang, Suhui ;
Lin, Xuetong ;
Hao, Yan ;
Ji, Junwen ;
Liu, Xinyu ;
Xu, Zhen .
OPTICS AND LASER TECHNOLOGY, 2023, 159