Numerical simulations on the enhancement of the signal-to-noise ratio by using a vector vortex beam with polarization modulation in LIDAR applications

被引:2
作者
Wei, Lude [1 ]
Zhou, Yifan [2 ]
Li, Xiang
Zhang, Qinlang [2 ]
Zhang, Tianpei [1 ]
Hu, Di [1 ]
Zhang, Qixiong
Zhang, Wei [1 ]
Wang, Xuan [2 ,3 ]
机构
[1] Hubei Univ, Sch Microelect, Wuhan 430062, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[3] Wuhan Inst Quantum Technol, Wuhan 430206, Peoples R China
基金
中国国家自然科学基金;
关键词
Vector vortex; Laser remote sensing; Spatial separation; Lidar; ORBITAL ANGULAR-MOMENTUM; RAMAN LIDAR; GENERATION; SYSTEM;
D O I
10.1016/j.optlastec.2024.111216
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Vortex beams have the significance to enhance the performance of lidar (light detection and ranging). We propose a simulation model that uses the vector vortex beam with polarization modulation to separate background and multiple-scattered signals from the signals reflected back from a target. Numerical simulations show that when the vortex retarder was placed in the simulation model, the signal-to-noise ratio (SNR) was improved by blocking the multiple-scattered signals. The background and multiple-scattered signals (incoherent light) show a spot-like distribution at the center on the image plane. The single-scattered signals (coherent light) form a ring-shaped intensity distribution. Thus, we can use an annular aperture to filter out the incoherent part. The simulation models can help design better performing lidar instruments and optical communication systems. The optical vortex can be used for optical filtering of underwater exploration, and optical communication.
引用
收藏
页数:9
相关论文
共 43 条
[1]   IMPLICATIONS OF ATMOSPHERIC ATTENUATION IN RAMAN LIDAR DETECTION OF POLLUTANTS [J].
AHMAD, SR ;
BILLIET, EM .
OPTICS AND LASER TECHNOLOGY, 1991, 23 (03) :180-188
[2]   Vortex beams with zero orbital angular momentum and non-zero topological charge [J].
Aksenov, V. P. ;
Dudorov, V. V. ;
Filimonov, G. A. ;
Kolosov, V. V. ;
Venediktov, V. Yu. .
OPTICS AND LASER TECHNOLOGY, 2018, 104 :159-163
[3]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[4]   Angular momentum-carrying radially-polarised twisted light [J].
Babiker, M. ;
Koksal, K. ;
Lembessis, V. E. .
OPTICS COMMUNICATIONS, 2023, 537
[5]   Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings [J].
Bomzon, Z ;
Biener, G ;
Kleiner, V ;
Hasman, E .
OPTICS LETTERS, 2002, 27 (05) :285-287
[6]   Polarization Shaping for Control of Nonlinear Propagation [J].
Bouchard, Frederic ;
Larocque, Hugo ;
Yao, Alison M. ;
Travis, Christopher ;
De Leon, Israel ;
Rubano, Andrea ;
Karimi, Ebrahim ;
Oppo, Gian-Luca ;
Boyd, Robert W. .
PHYSICAL REVIEW LETTERS, 2016, 117 (23)
[7]   Remote sensing of water depths in shallow waters via artificial neural networks [J].
Ceyhun, Oezcelik ;
Yalcin, Arisoy .
ESTUARINE COASTAL AND SHELF SCIENCE, 2010, 89 (01) :89-96
[8]   Propagation of vector vortex beams through a turbulent atmosphere [J].
Cheng, Wen ;
Haus, Joseph W. ;
Zhan, Qiwen .
OPTICS EXPRESS, 2009, 17 (20) :17829-17836
[9]   On the resilience of scalar and vector vortex modes in turbulence [J].
Cox, Mitchell A. ;
Rosales-Guzman, Carmelo ;
Lavery, Martin P. J. ;
Versfeld, Daniel J. ;
Forbes, Andrew .
OPTICS EXPRESS, 2016, 24 (16) :18105-18113
[10]   Entangled vector vortex beams [J].
D'Ambrosio, Vincenzo ;
Carvacho, Gonzalo ;
Graffitti, Francesco ;
Vitelli, Chiara ;
Piccirillo, Bruno ;
Marrucci, Lorenzo ;
Sciarrino, Fabio .
PHYSICAL REVIEW A, 2016, 94 (03)