Synergistic utilization of industrial solid wastes: Extraction of valuable metals from tungsten leaching residue by photovoltaic sawing waste

被引:3
作者
Li, Mingjing [1 ,2 ]
Huang, Liuqing [1 ,2 ]
Chen, Weinan [1 ,2 ]
Huang, Zexi [3 ]
Wang, Haijun [3 ]
Liu, Chunjia [3 ]
Luo, Xuetao [1 ,2 ]
Barati, Mansoor [4 ]
机构
[1] Xiamen Univ, Coll Mat, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Shenzhen Res Inst, Xiamen 361005, Peoples R China
[3] Xiamen Tungsten Co Ltd, Xiamen 361009, Peoples R China
[4] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S3E4, Canada
关键词
Tungsten leaching residue; Photovoltaic sawing waste; Valuable metals; Recycling; Silicothermic reduction; LIFE-CYCLE ASSESSMENT; RECOVERY; CARBIDE; SILICON; COBALT; REDUCTION; OXIDATION; SLUDGE; SCRAP;
D O I
10.1016/j.wasman.2024.05.025
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solid waste challenges in both the tungsten and photovoltaic industries present significant barriers to achieving carbon neutrality. This study introduces an innovative strategy for the efficient extraction of valuable metals from hazardous tungsten leaching residue (W-residue) by leveraging photovoltaic silicon kerf waste (SKW) as a silicothermic reducing agent. W-residue contains 26.2% valuable metal oxides (WO 3 , CoO, Nb 2 O 5 , and Ta 2 O 5 ) and other refractory oxides (SiO 2 , TiO 2 , etc .), while micron-sized SKW contains 91.9% Si with a surface oxide layer. The impact of SKW addition on the silicothermic reduction process for valuable metal oxides in W-residue was investigated. Incorporating SKW and Na 2 CO 3 flux enables valuable metal oxides from W-residue to be effectively reduced and enriched as a valuable alloy phase, with unreduced refractory oxides forming a harmless slag phase during the Na 2 O-SiO 2 -TiO 2 slag refining process. This process achieved an overall recovery yield of valuable metals of 91.7%, with individual recovery yields of W, Co, and Nb exceeding 90% with the addition of 8 wt.% SKW. This innovative approach not only achieves high-value recovery from W-residue and utilization of SKW but also minimizes environmental impact through an efficient and eco-friendly recycling pathway. The strategy contributes significantly to the establishment of a resource-efficient circular economy, wherein the recovered high-value alloy phase return to the tungsten supply chain, and the harmless slag phase become raw materials for microcrystalline glass production.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 50 条
[1]   Life Cycle Assessment of Tantalum and Niobium Recycling from Hard Metal Scrap [J].
Aromaa, Riina ;
Rinne, Marja ;
Lundstrom, Mari .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (41) :14997-15005
[2]   Comparative Life Cycle Assessment of Hardmetal Chemical Recycling Routes [J].
Aromaa, Riina ;
Rinne, Marja ;
Lundstroem, Mari .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (31) :10234-10242
[3]  
Barin I., 1989, Thermochemical Data of Pure Substances, P48
[4]   Recovery of tungsten and cobalt from cemented tungsten carbide wastes using carbonate roasting and water leaching [J].
Byun, So Yeong ;
Park, Jong Sun ;
Kang, Jong Hyeok ;
Seo, Sangyun ;
Tran, Tam ;
Kim, Myong Jun .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2021, 71 (06) :711-720
[5]   On the fcc→D019 transformation in Co-W alloys [J].
Carvalho, PA ;
Bronsveld, PM ;
Kooi, BJ ;
De Hosson, JTM .
ACTA MATERIALIA, 2002, 50 (18) :4511-4526
[6]   Trends and perspectives in the use of organic acids for critical metal recycling from hard-metal scraps [J].
Cera, Martina ;
Trudu, Stefano ;
Amadou, Amadou Oumarou ;
Asunis, Fabiano ;
Farru, Gianluigi ;
De Gaudenzi, Gian Pietro ;
De Gioannis, Giorgia ;
Serpe, Angela .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 114
[7]   Preparation of Al-Si alloy from silicon cutting waste: Enabling oxide surface removing and silicon utilization improving via vacuum sintering [J].
Chen, Guangyu ;
Li, Yan ;
Huang, Liuqing ;
Yang, Yuanhao ;
Sheng, Wang ;
Zhang, Chentong ;
Luo, Xuetao .
SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 863
[8]   Recycling silicon kerf waste: Use cryolite to digest the surface oxide layer and intensify the removal of impurity boron [J].
Chen, Guangyu ;
Li, Yan ;
Huang, Liuqing ;
Peng, Jun ;
Tang, Lizhi ;
Luo, Xuetao .
JOURNAL OF HAZARDOUS MATERIALS, 2022, 423
[9]   From waste to wealth: Valuable metals recovered from waste tungsten leaching residue by a smelting reduction process using CaO-Fe capture agent [J].
Chen, Weinan ;
Huang, Liuqing ;
Li, Mingjing ;
Huang, Zexi ;
Wang, Haijun ;
Liu, Chunjia ;
Luo, Xuetao .
JOURNAL OF CLEANER PRODUCTION, 2023, 422
[10]   Recent Advances in the Utilization of Tungsten Residue: A Mini Review of China [J].
Deng, Pan ;
Cheng, Lili ;
Li, Alin ;
Zeng, Zhiyong ;
Liao, Chunfa .
METALS, 2023, 13 (08)