Stochastic Partial Differential Equations and Invariant Manifolds in Embedded Hilbert Spaces

被引:1
作者
Bhaskaran, Rajeev [1 ]
Tappe, Stefan [2 ]
机构
[1] Indian Inst Sci Educ & Res Thiruvanantapuram, Sch Math, Chennai 695551, Kerala, India
[2] Albert Ludwig Univ Freiburg, Dept Math Stochast, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
关键词
Stochastic partial differential equation; Continuously embedded Hilbert spaces; Invariant manifold; Finite dimensional diffusion; Multi-parameter group; Hermite Sobolev space; Translation invariant solution; FINITE-DIMENSIONAL REALIZATIONS; AFFINE REALIZATIONS; TERM STRUCTURE; PROBABILISTIC REPRESENTATIONS; EXISTENCE; DIFFUSIONS; GEOMETRY; SETS;
D O I
10.1007/s11118-024-10134-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide necessary and sufficient conditions for stochastic invariance of finite dimensional submanifolds for solutions of stochastic partial differential equations (SPDEs) in continuously embedded Hilbert spaces with non-smooth coefficients. Furthermore, we establish a link between invariance of submanifolds for such SPDEs in Hermite Sobolev spaces and invariance of submanifolds for finite dimensional SDEs. This provides a new method for analyzing stochastic invariance of submanifolds for finite dimensional It & ocirc; diffusions, which we will use in order to derive new invariance results for finite dimensional SDEs.
引用
收藏
页码:189 / 236
页数:48
相关论文
共 41 条
[1]  
[Anonymous], 1999, SYS CON FDN
[2]   A geometric characterization of viable sets for controlled degenerate diffusions [J].
Bardi, M ;
Jensen, R .
SET-VALUED ANALYSIS, 2002, 10 (2-3) :129-141
[3]  
Bhaskaran R., 2022, ARXIV
[4]  
Björk T, 2004, LECT NOTES MATH, V1847, P133
[5]   On the construction of finite dimensional realizations for nonlinear forward rate models [J].
Björk, T ;
Landén, C .
FINANCE AND STOCHASTICS, 2002, 6 (03) :303-331
[6]   On the existence of finite-dimensional realizations for nonlinear forward rate models [J].
Björk, T ;
Svensson, L .
MATHEMATICAL FINANCE, 2001, 11 (02) :205-243
[7]   Invariance of stochastic control systems with deterministic arguments [J].
Da Prato, G ;
Frankowska, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (01) :18-52
[8]  
Da Prato G., 2014, Stochastic Equations in Infinite Dimensions, V152, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
[9]  
Elworthy KD., 1982, STOCHASTIC DIFFERENT, DOI [10.1017/CBO9781107325609, DOI 10.1017/CBO9781107325609]
[10]  
Emery M., 1989, STOCHASTIC CALCULUS, DOI [10.1007/978-3-642-75051-9, DOI 10.1007/978-3-642-75051-9]