Site Identification and Next Choice Protocol for Hit-to-Lead Optimization

被引:0
作者
Kudo, Genki [1 ]
Hirao, Takumi [2 ,3 ]
Yoshino, Ryunosuke [3 ,4 ]
Shigeta, Yasuteru [5 ]
Hirokawa, Takatsugu [3 ,4 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Dept Phys, Tsukuba, Ibaraki 3058571, Japan
[2] Univ Tsukuba, Grad Sch Comprehens Human Sci, Doctoral Program Med Sci, Tsukuba, Ibaraki 3058575, Japan
[3] Univ Tsukuba, Fac Med, Div Biomed Sci, Tsukuba, Ibaraki 3058575, Japan
[4] Univ Tsukuba, Transborder Med Res Ctr, Tsukuba, Ibaraki 3058575, Japan
[5] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
关键词
MEDICINAL CHEMISTRY PUBLICATIONS; STRUCTURE-GUIDED DESIGN; INHIBITORS; GENERATION; DISCOVERY; MUTANT;
D O I
10.1021/acs.jcim.3c02036
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Time efficiency and cost savings are major challenges in drug discovery and development. In this process, the hit-to-lead stage is expected to improve efficiency because it primarily exploits the trial-and-error approach of medicinal chemists. This study proposes a site identification and next choice (SINCHO) protocol to improve the hit-to-lead efficiency. This protocol selects an anchor atom and growth site pair, which is desirable for a hit-to-lead strategy starting from a 3D complex structure. We developed and fine-tuned the protocol using a training data set and assessed it using a test data set of the preceding hit-to-lead strategy. The protocol was tested for experimentally determined structures and molecular dynamics (MD) ensembles. The protocol had a high prediction accuracy for applying MD ensembles, owing to the consideration of protein flexibility. The SINCHO protocol enables medicinal chemists to visualize and modify functional groups in a hit-to-lead manner.
引用
收藏
页码:4475 / 4484
页数:10
相关论文
共 52 条
[1]   Flipped out: Structure-guided design of selective pyrazolylpyrrole ERK inhibitors [J].
Aronov, Alex M. ;
Baker, Christopher ;
Bemis, Guy W. ;
Cao, Jingrong ;
Chen, Guanjing ;
Ford, Pamella J. ;
Germann, Ursula A. ;
Green, Jeremy ;
Hale, Michael R. ;
Jacobs, Marc ;
Janetka, James W. ;
Maltais, Francois ;
Martinez-Botella, Gabriel ;
Namchuk, Mark N. ;
Straub, Judy ;
Tang, Qing ;
Xie, Xiaoling .
JOURNAL OF MEDICINAL CHEMISTRY, 2007, 50 (06) :1280-1287
[2]   Identification of a novel CDK9 inhibitor targeting the intramolecular hidden cavity of CDK9 induced by Tat binding [J].
Asamitsu, Kaori ;
Hirokawa, Takatsugu ;
Okamoto, Takashi .
PLOS ONE, 2022, 17 (11)
[3]   Past, Present, and Future Perspectives on Computer-Aided Drug Design Methodologies [J].
Bassani, Davide ;
Moro, Stefano .
MOLECULES, 2023, 28 (09)
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   Hit and lead generation:: Beyond high-throughput screening [J].
Bleicher, KH ;
Böhm, HJ ;
Müller, K ;
Alanine, AI .
NATURE REVIEWS DRUG DISCOVERY, 2003, 2 (05) :369-378
[6]   Stochastic thermostats: comparison of local and global schemes [J].
Bussi, Giovanni ;
Parrinello, Michele .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (1-3) :26-29
[7]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[8]   Isothermal-isobaric molecular dynamics using stochastic velocity rescaling [J].
Bussi, Giovanni ;
Zykova-Timan, Tatyana ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (07)
[9]   Deep learning approaches in predicting ADMET properties [J].
Caceres, Elena L. ;
Tudor, Matthew ;
Cheng, Alan C. .
FUTURE MEDICINAL CHEMISTRY, 2020, 12 (22) :1995-1999
[10]   Fragment-Based Discovery of Bromodomain Inhibitors Part 1: Inhibitor Binding Modes and Implications for Lead Discovery [J].
Chung, Chun-wa ;
Dean, Anthony W. ;
Woolven, James M. ;
Bamborough, Paul .
JOURNAL OF MEDICINAL CHEMISTRY, 2012, 55 (02) :576-586