Aging heat treatment design for Haynes 282 made by wire-feed additive manufacturing using high-throughput experiments and interpretable machine learning
被引:2
作者:
Wang, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
Wang, Xin
[1
]
Pizano, Luis Fernando Ladinos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
Pizano, Luis Fernando Ladinos
[1
]
Sridar, Soumya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
Sridar, Soumya
[1
]
Sudbrack, Chantal
论文数: 0引用数: 0
h-index: 0
机构:
Natl Energy Technol Lab, Albany, OR USAUniv Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
Sudbrack, Chantal
[2
]
Xiong, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
Xiong, Wei
[1
]
机构:
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
Wire-feed additive manufacturing (WFAM) produces superalloys with complex thermal cycles and unique microstructures, often requiring optimized heat treatments. To address this challenge, we present a hybrid approach that combines high-throughput experiments, precipitation simulation, and machine learning to design effective aging conditions for the WFAM Haynes 282 superalloy. Our results demonstrate that the gamma' radius is the critical microstructural feature for strengthening Haynes 282 during post-heat treatment compared with the matrix composition and gamma' volume fraction. New aging conditions at 770 degrees C for 50 hours and 730 degrees C for 200 hours were discovered based on the machine learning model and were applied to enhance yield strength, bringing it on par with the wrought counterpart. This approach has significant implications for future AM alloy production, enabling more efficient and effective heat treatment design to achieve desired properties.
机构:
Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
Zhao, Yunhao
论文数: 引用数:
h-index:
机构:
Sargent, Noah
Li, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
Li, Kun
Xiong, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA