Physics-informed KNN milling stability model with process damping effects

被引:3
作者
Schmitz, Tony [1 ,2 ]
机构
[1] Univ Tennessee, Mech Aerosp & Biomed Engn Dept, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Oak Ridge, TN USA
关键词
Milling; Dynamics; Chatter; Machine learning; SURFACE LOCATION ERROR; COUPLED DYNAMICS;
D O I
10.1016/j.jmapro.2024.04.090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes a k-nearest neighbors, or KNN, model for milling stability including process damping effects. A physics-based, frequency domain milling stability solution is used to generate the training data, but does not incorporate process damping effects. The data set is then updated using limited tests to capture the process damping behavior. A "stair step" approach is used to select the test points, where a first spindle speed-axial depth combination is selected based on the physics-based stability map, subsequent tests are defined using the previous test result, and data points are updated by knowledge of process damping behavior and the test results. The KNN modeling approach demonstrates the ability to predict both stable and unstable results, including process damping behavior.
引用
收藏
页码:1124 / 1129
页数:6
相关论文
共 32 条
[1]  
Altintas Y, 2012, MANUFACTURING AUTOMATION: METAL CUTTING MECHANICS, MACHINE TOOL VIBRATIONS, AND CNC DESIGN, 2ND EDITION, P1
[2]  
ALTINTAS Y, 1995, ANN CIRP, V44, P357, DOI DOI 10.1016/S0007-8506(07)62342-7
[3]   Chatter Stability of Machining Operations [J].
Altintas, Yusuf ;
Stepan, Gabor ;
Budak, Erhan ;
Schmitz, Tony ;
Kilic, Zekai Murat .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (11)
[4]   Online adaption of milling parameters for a stable and productive process [J].
Bergmann, Benjamin ;
Reimer, Svenja .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2021, 70 (01) :341-344
[5]   Physics-informed Bayesian inference for milling stability analysis* [J].
Chen, Gengxiang ;
Li, Yingguang ;
Liu, Xu ;
Yang, Bo .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2021, 167
[6]   Machining Chatter Prediction Using a Data Learning Model [J].
Cherukuri, Harish ;
Perez-Bernabeu, Elena ;
Selles, Miguel ;
Schmitz, Tony .
JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2019, 3 (02)
[7]   Hybrid manufacturing of Invar mold for carbon fiber layup using structured light scanning [J].
Cornelius A. ;
Jacobs L. ;
Lamsey M. ;
McNeil L. ;
Hamel W. ;
Schmitz T. .
Manufacturing Letters, 2022, 33 :133-142
[8]   A Bayesian Framework for Milling Stability Prediction and Reverse Parameter Identification [J].
Cornelius, Aaron ;
Karandikar, Jaydeep ;
Gomez, Michael ;
Schmitz, Tony .
49TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 49, 2021), 2021, 53 :760-772
[9]   Combination of structured light scanning and external fiducials for coordinate system transfer in hybrid manufacturing [J].
Cornelius, Aaron ;
Dvorak, Jake ;
Jacobs, Leah ;
Penney, Joshua ;
Schmitz, Tony .
JOURNAL OF MANUFACTURING PROCESSES, 2021, 68 :1824-1836
[10]   Physics-informed Bayesian machine learning case study: Integral blade rotors [J].
Corson, Gregory ;
Karandikar, Jaydeep ;
Schmitz, Tony .
JOURNAL OF MANUFACTURING PROCESSES, 2023, 85 :503-514