Topological protection of Majorana polaritons in a cavity

被引:5
作者
Bacciconi, Zeno [1 ,2 ]
Andolina, Gian Marcello [3 ]
Mora, Christophe [4 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Abdus Salam Int Ctr Theoret Phys ICTP, Str Costiera 11, I-34151 Trieste, Italy
[3] PSL Res Univ, Coll France, JEIP, USR 3573 CNRS, 11 Pl Marcelin Berthelot, F-75321 Paris, France
[4] Univ Paris Cite, CNRS, Lab Mat & Phenomenes Quant, F-75013 Paris, France
基金
欧盟地平线“2020”;
关键词
Compendex;
D O I
10.1103/PhysRevB.109.165434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cavity embedding is an emerging paradigm for the control of quantum matter, offering avenues to manipulate electronic states and potentially drive topological phase transitions. In this work, we address the stability of a onedimensional topological superconducting phase to the vacuum quantum fluctuations brought by a global cavity mode. By employing a quasiadiabatic analytical approach completed by density matrix renormalization group calculations, we show that the Majorana end modes evolve into composite polaritonic modes while maintaining the topological order intact and robust to disorder. These Majorana polaritons keep their non-Abelian exchange properties and protect a twofold exponentially degenerate ground state for an open chain. They become, however, weak edge modes in the sense that they no longer commute with the full Hamiltonian and protect the exponential degeneracy only in the ground-state manifold.
引用
收藏
页数:7
相关论文
共 69 条
  • [1] Parafermionic phases with symmetry breaking and topological order
    Alexandradinata, A.
    Regnault, N.
    Fang, Chen
    Gilbert, Matthew J.
    Bernevig, B. Andrei
    [J]. PHYSICAL REVIEW B, 2016, 94 (12)
  • [2] Topological Phases with Parafermions: Theory and Blueprints
    Alicea, Jason
    Fendley, Paul
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 7, 2016, 7 : 119 - 139
  • [3] Andberger J, 2023, Arxiv, DOI arXiv:2308.03195
  • [4] A non-perturbative no-go theorem for photon condensation in approximate models
    Andolina, G. M.
    Pellegrino, F. M. D.
    Mercurio, A.
    Di Stefano, O.
    Polini, M.
    Savasta, S.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (12)
  • [5] Theory of photon condensation in a spatially varying electromagnetic field
    Andolina, G. M.
    Pellegrino, F. M. D.
    Giovannetti, V
    MacDonald, A. H.
    Polini, M.
    [J]. PHYSICAL REVIEW B, 2020, 102 (12)
  • [6] Cavity quantum electrodynamics of strongly correlated electron systems: A no-go theorem for photon condensation
    Andolina, G. M.
    Pellegrino, F. M. D.
    Giovannetti, V
    MacDonald, A. H.
    Polini, M.
    [J]. PHYSICAL REVIEW B, 2019, 100 (12)
  • [7] Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect
    Appugliese, Felice
    Enkner, Josefine
    Paravicini-Bagliani, Gian Lorenzo
    Beck, Mattias
    Reichl, Christian
    Wegscheider, Werner
    Scalari, Giacomo
    Ciuti, Cristiano
    Faist, Jerome
    [J]. SCIENCE, 2022, 375 (6584) : 1030 - +
  • [8] aps.org, About us, DOI [10.1103/PhysRevB.109.165434, DOI 10.1103/PHYSREVB.109.165434]
  • [9] Quantum electron transport controlled by cavity vacuum fields
    Arwas, Geva
    Ciuti, Cristiano
    [J]. PHYSICAL REVIEW B, 2023, 107 (04)
  • [10] Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition
    Ashida, Yuto
    Imamoglu, Atac
    Faist, Jerome
    Jaksch, Dieter
    Cavalleri, Andrea
    Demler, Eugene
    [J]. PHYSICAL REVIEW X, 2020, 10 (04):