ON A SPECIAL CLASS OF MATRIX RINGS

被引:0
作者
Bhattacharjee, Arnab [1 ]
机构
[1] Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Dept Math, Karimganj, Assam, India
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2024年 / 39卷 / 02期
关键词
Staircase matrix ring; symmetric ring; reversible ring; IFP ring; reflexive ring; EXTENSIONS;
D O I
10.4134/CKMS.c220356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we continue to explore an idea presented in [3] and introduce a new class of matrix rings called staircase matrix rings which has applications in noncommutative ring theory. We show that these rings preserve the notions of reduced, symmetric, reversible, IFP, reflexive, abelian rings, etc.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 15 条
  • [1] Agayev N., 2009, Algebras Groups Geom., V26, P343
  • [2] Bell H. E., 1970, Bull. Austral. Math. Soc., V2, P363, DOI DOI 10.1017/S0004972700042052
  • [3] Ring endomorphisms satisfying the central reversible property
    Bhattacharjee, Arnab
    Chakraborty, Uday Shankar
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [4] On some classes of reflexive rings
    Chakraborty, Uday Shankar
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (01)
  • [5] [陈卫星 Chen Wei Xing], 2017, [数学学报, Acta Mathematica Sinica], V60, P1057
  • [6] Reversible rings
    Cohn, PM
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 641 - 648
  • [7] Basic examples and extensions of symmetric rings
    Huh, C
    Kim, HK
    Kim, NK
    Lee, Y
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 202 (1-3) : 154 - 167
  • [8] Armendariz rings and semicommutative rings
    Huh, C
    Lee, Y
    Smoktunowicz, A
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (02) : 751 - 761
  • [9] ON PROPERTIES RELATED TO REVERSIBLE RINGS
    Jung, Da Woon
    Kim, Nam Kyun
    Lee, Yang
    Ryu, Sung Ju
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 247 - 261
  • [10] Kafkas G, 2011, ALGEBRA DISCRET MATH, V12, P72