Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications

被引:46
作者
Ye, Junzhi [1 ]
Gaur, Deepika [2 ]
Mi, Chenjia [3 ]
Chen, Zijian [4 ]
Fernandez, Iago Lopez [2 ]
Zhao, Haitao [4 ]
Dong, Yitong [3 ]
Polavarapu, Lakshminarayana [2 ]
Hoye, Robert L. Z. [1 ]
机构
[1] Univ Oxford, Dept Chem, Inorgan Chem Lab, South Parks Rd, Oxford OX1 3QR, England
[2] Univ Vigo, CINBIO, Mat Chem & Phys Grp, Dept Phys Chem Campus Univ Lagoas, Vigo 36310, Spain
[3] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA
[4] Chinese Acad Sci, Ctr Intelligent & Biomimet Syst, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金; 英国科研创新办公室;
关键词
SINGLE-PHOTON EMISSION; BIEXCITON AUGER RECOMBINATION; CSPBBR3; NANOCRYSTALS; CARRIER DYNAMICS; SIZE DEPENDENCE; SOLAR-CELLS; BRIGHT; LIGHT; BLINKING; PHOTOLUMINESCENCE;
D O I
10.1039/d4cs00077c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal semiconductor nanocrystals enable the realization and exploitation of quantum phenomena in a controlled manner, and can be scaled up for commercial uses. These materials have become important for a wide range of applications, from ultrahigh definition displays, to solar cells, quantum computing, bioimaging, optical communications, and many more. Over the last decade, lead-halide perovskite nanocrystals have rapidly gained prominence as efficient semiconductors. Although the majority of studies have focused on large nanocrystals in the weak- to intermediate-confinement regime, quantum dots (QDs) in the strongly-confined regime (with sizes smaller than the Bohr diameter, which ranges from 4-12 nm for lead-halide perovskites) offer unique opportunities, including polarized light emission and color-pure, stable luminescence in the region that is unattainable by perovskites with single-halide compositions. In this tutorial review, we bring together the latest insights into this emerging and rapidly growing area, focusing on the synthesis, steady-state optical properties (including exciton fine-structure splitting), and transient kinetics (including hot carrier cooling) of strongly-confined perovskite QDs. We also discuss recent advances in their applications, including single photon emission for quantum technologies, as well as light-emitting diodes. We finish with our perspectives on future challenges and opportunities for strongly-confined QDs, particularly around improving the control over monodispersity and stability, important fundamental questions on the photophysics, and paths forward to improve the performance of perovskite QDs in light-emitting diodes. Reducing the dimensionality of lead-halide perovskite nanocrystals from 3D to 0D leads to fascinating properties. This tutorial review discusses the synthesis, optical properties and applications of such strongly-confined quantum dots.
引用
收藏
页码:8095 / 8122
页数:29
相关论文
共 178 条
[1]   Mechanistic Investigation of the Defect Activity Contributing to the Photoluminescence Blinking of CsPbBr3 Perovskite Nanocrystals [J].
Ahmed, Tasnim ;
Seth, Sudipta ;
Samanta, Anunay .
ACS NANO, 2019, 13 (11) :13537-13544
[2]   Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots [J].
Akkerman, Quinten A. ;
Nguyen, Tan P. T. ;
Boehme, Simon C. ;
Montanarella, Federico ;
Dirin, Dmitry N. ;
Wechsler, Philipp ;
Beiglbock, Finn ;
Raino, Gabriele ;
Erni, Rolf ;
Katan, Claudine ;
Even, Jacky ;
Kovalenko, Maksym V. .
SCIENCE, 2022, 377 (6613) :1406-1412
[3]   Role of Acid-Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals [J].
Almeida, Guilherme ;
Goldoni, Luca ;
Akkerman, Quinten ;
Dang, Zhiya ;
Khan, Ali Hossain ;
Marras, Sergio ;
Moreels, Iwan ;
Manna, Liberato .
ACS NANO, 2018, 12 (02) :1704-+
[4]   CsPbI3 Nanocrystals Go with the Flow: From Formation Mechanism to Continuous Nanomanufacturing [J].
Antami, Kameel ;
Bateni, Fazel ;
Ramezani, Mahdi ;
Hauke, Cory E. ;
Castellano, Felix N. ;
Abolhasani, Milad .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (06)
[5]   Automated LARP synthesis identifies optimal ligand combinations for perovskite nanocrystal preparation [J].
Arciniegas, Milena P. ;
Manna, Liberato .
DEVICE, 2023, 1 (06)
[6]   Size-Dependent Biexciton Spectrum in CsPbBr3 Perovskite Nanocrystals [J].
Ashner, Matthew N. ;
Shulenberger, Katherine E. ;
Krieg, Franziska ;
Powers, Eric R. ;
Kovalenko, Maksym, V ;
Bawendi, Moungi G. ;
Tisdale, William A. .
ACS ENERGY LETTERS, 2019, 4 (11) :2639-2645
[7]   Perovskite Light-Emitting Diodes with an External Quantum Efficiency Exceeding 30% [J].
Bai, Wenhao ;
Xuan, Tongtong ;
Zhao, Haiyan ;
Dong, Haorui ;
Cheng, Xinru ;
Wang, Le ;
Xie, Rong-Jun .
ADVANCED MATERIALS, 2023, 35 (39)
[8]   Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning [J].
Balachandran, Prasanna V. ;
Kowalski, Benjamin ;
Sehirlioglu, Alp ;
Lookman, Turab .
NATURE COMMUNICATIONS, 2018, 9
[9]   Excitons in Metal-Halide Perovskites [J].
Baranowski, Michal ;
Plochocka, Paulina .
ADVANCED ENERGY MATERIALS, 2020, 10 (26)
[10]   Bright triplet excitons in caesium lead halide perovskites [J].
Becker, Michael A. ;
Vaxenburg, Roman ;
Nedelcu, Georgian ;
Sercel, Peter C. ;
Shabaev, Andrew ;
Mehl, Michael J. ;
Michopoulos, John G. ;
Lambrakos, Samuel G. ;
Bernstein, Noam ;
Lyons, John L. ;
Stoferle, Thilo ;
Mahrt, Rainer F. ;
Kovalenko, Maksym V. ;
Norris, David J. ;
Raino, Gabriele ;
Efros, Alexander L. .
NATURE, 2018, 553 (7687) :189-+