DRL-Based Sequential Scheduling for IRS-Assisted MIMO Communications

被引:1
作者
Pereira-Ruisanchez, Dariel [1 ,2 ]
Fresnedo, Oscar [1 ,2 ]
Perez-Adan, Darian [1 ,2 ]
Castedo, Luis [1 ,2 ]
机构
[1] Univ A Coruna, Dept Comp Engn, La Coruna 15001, Spain
[2] Univ A Coruna, CITIC Res Ctr, La Coruna 15001, Spain
关键词
MIMO communication; Optimization; Resource management; Reinforcement learning; Uplink; Processor scheduling; Dynamic scheduling; Scheduling; intelligent reflecting surfaces; deep reinforcement learning; PPO; resource allocation; INTELLIGENT REFLECTING SURFACE; OPTIMIZATION; ALLOCATION;
D O I
10.1109/TVT.2024.3359117
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficient resource allocation strategies are pivotal in vehicular communications as connected devices steeply increase in scenarios with much more stringent requirements. In this work, we propose a deep reinforcement learning (DRL)-based sequential scheduling approach for sum-rate maximization in the uplink of intelligent reflecting surface (IRS)-assisted multi-user (MU) multiple-input multiple-output (MIMO) vehicular communications. We formulate the scheduling task as a partially observable Markov decision process (POMDP) and propose a novel stream-level sequential solution based on the proximal policy optimization (PPO) algorithm. We consider a realistic imperfect channel state information (ICSI) model and assess the proposal in several communication setups comprising both spatially uncorrelated and correlated links. Simulation results show that the proposed DRL-based sequential scheduling approach is a robust alternative to more computationally demanding benchmarks.
引用
收藏
页码:8445 / 8459
页数:15
相关论文
共 36 条
[1]   Reconfigurable Intelligent Surface Enabled Vehicular Communication: Joint User Scheduling and Passive Beamforming [J].
Al-Hilo, Ahmed ;
Samir, Moataz ;
Elhattab, Mohamed ;
Assi, Chadi ;
Sharafeddine, Sanaa .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) :2333-2345
[2]   6G Wireless Communications Networks: A Comprehensive Survey [J].
Alsabah, Muntadher ;
Naser, Marwah Abdulrazzaq ;
Mahmmod, Basheera M. ;
Abdulhussain, Sadiq H. ;
Eissa, Mohammad R. ;
Al-Baidhani, Ahmed ;
Noordin, Nor K. ;
Sait, Sadiq M. ;
Al-Utaibi, Khaled A. ;
Hashim, Fazirul .
IEEE ACCESS, 2021, 9 :148191-148243
[3]   The Frontiers of Deep Reinforcement Learning for Resource Management in Future Wireless HetNets: Techniques, Challenges, and Research Directions [J].
Alwarafy, Abdulmalik ;
Abdallah, Mohamed ;
Ciftler, Bekir Sait ;
Al-Fuqaha, Ala ;
Hamdi, Mounir .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 :322-365
[4]   ML-Based Radio Resource Management in 5G and Beyond Networks: A Survey [J].
Bartsiokas, Ioannis A. ;
Gkonis, Panagiotis K. ;
Kaklamani, Dimitra, I ;
Venieris, Iakovos S. .
IEEE ACCESS, 2022, 10 :83507-83528
[5]  
Bick D., 2021, THESIS U GRONINGEN N
[6]   Massive MIMO networks: Spectral, energy, and hardware efficiency [J].
Björnson E. ;
Hoydis J. ;
Sanguinetti L. .
Foundations and Trends in Signal Processing, 2017, 11 (3-4) :154-655
[7]   Toward Smart and Secure V2X Communication in 5G and Beyond: A UAV-Enabled Aerial Intelligent Reflecting Surface Solution [J].
Cao, Yurui ;
Xu, Sai ;
Liu, Jiajia ;
Kato, Nei .
IEEE VEHICULAR TECHNOLOGY MAGAZINE, 2022, 17 (01) :66-73
[8]   An Overview on Resource Allocation Techniques for Multi-User MIMO Systems [J].
Castaneda, Eduardo ;
Silva, Adao ;
Gameiro, Atilio ;
Kountouris, Marios .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (01) :239-284
[9]   Multi-Agent Reinforcement Learning-Based Resource Allocation for UAV Networks [J].
Cui, Jingjing ;
Liu, Yuanwei ;
Nallanathan, Arumugam .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (02) :729-743
[10]   Deep Reinforcement Learning Based Intelligent Reflecting Surface Optimization for MISO Communication Systems [J].
Feng, Keming ;
Wang, Qisheng ;
Li, Xiao ;
Wen, Chao-Kai .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (05) :745-749