A multi-head self-attention autoencoder network for fault detection of wind turbine gearboxes under random loads

被引:4
|
作者
Yu, Xiaoxia [1 ]
Zhang, Zhigang [1 ]
Tang, Baoping [2 ]
Zhao, Minghang [3 ]
机构
[1] Chongqing Univ Technol, Coll Mech Engn, Chongqing 400054, Peoples R China
[2] Chongqing Univ, Coll Mech Engn, Chongqing 400044, Peoples R China
[3] Harbin Inst Technol, Sch Ocean Engn, Weihai 264209, Shandong, Peoples R China
关键词
multihead self-attention; fault detection; dynamic warning threshold (DWT); wind turbine gearbox;
D O I
10.1088/1361-6501/ad4dd4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wind turbine gearboxes work under random load for extended periods of time, and the fault detection indicator constructed by the existing deep learning models fluctuate constantly due to the load, which is easy to cause frequent false alarms. Therefore, a multihead self-attention autoencoder network is proposed and combined with a dynamic alarm threshold to detect faults in a wind turbine gearbox subjected to random loads. The multiheaded attention mechanism layer enhances the feature-extraction capability of the proposed network by extracting global and local features from input data. Furthermore, to suppress the influence of the random load, a dynamic warning threshold was designed based on the reconstruction error between the inputs and outputs of the proposed network. Finally, the effectiveness of the proposed method was verified using the vibration data of wind turbine gearboxes from an actual wind farm.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Personalized multi-head self-attention network for news recommendation
    Zheng, Cong
    Song, Yixuan
    NEURAL NETWORKS, 2025, 181
  • [2] MSnet: Multi-Head Self-Attention Network for Distantly Supervised Relation Extraction
    Sun, Tingting
    Zhang, Chunhong
    Ji, Yang
    Hu, Zheng
    IEEE ACCESS, 2019, 7 : 54472 - 54482
  • [3] DILATED RESIDUAL NETWORK WITH MULTI-HEAD SELF-ATTENTION FOR SPEECH EMOTION RECOGNITION
    Li, Runnan
    Wu, Zhiyong
    Jia, Jia
    Zhao, Sheng
    Meng, Helen
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6675 - 6679
  • [4] Learning Contextual Features with Multi-head Self-attention for Fake News Detection
    Wang, Yangqian
    Han, Hao
    Ding, Ye
    Wang, Xuan
    Liao, Qing
    COGNITIVE COMPUTING - ICCC 2019, 2019, 11518 : 132 - 142
  • [5] A novel two-stream multi-head self-attention convolutional neural network for bearing fault diagnosis
    Ren, Hang
    Liu, Shaogang
    Wei, Fengmei
    Qiu, Bo
    Zhao, Dan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (11) : 5393 - 5405
  • [6] Multi-modal multi-head self-attention for medical VQA
    Joshi, Vasudha
    Mitra, Pabitra
    Bose, Supratik
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42585 - 42608
  • [7] Dual-stream fusion network with multi-head self-attention for multi-modal fake news detection
    Yang, Yimei
    Liu, Jinping
    Yang, Yujun
    Cen, Lihui
    APPLIED SOFT COMPUTING, 2024, 167
  • [8] Multi-modal multi-head self-attention for medical VQA
    Vasudha Joshi
    Pabitra Mitra
    Supratik Bose
    Multimedia Tools and Applications, 2024, 83 : 42585 - 42608
  • [9] An interactive multi-head self-attention capsule network model for aspect sentiment classification
    Lina She
    Hongfang Gong
    Siyu Zhang
    The Journal of Supercomputing, 2024, 80 : 9327 - 9352
  • [10] An interactive multi-head self-attention capsule network model for aspect sentiment classification
    She, Lina
    Gong, Hongfang
    Zhang, Siyu
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (07) : 9327 - 9352