Coercivity enhancement in hematite/permalloy heterostructures across the Morin transition

被引:1
作者
Wang, Tianxing D. [1 ,2 ]
Basaran, Ali C. [1 ]
El Hage, Ralph [1 ]
Li, Junjie [1 ,2 ]
Navarro, Henry [1 ]
Torres, Felipe E. [1 ,3 ]
Fuente, Oscar Rodriguez de la [4 ]
Schuller, Ivan K. [1 ]
机构
[1] Univ Calif San Diego, Ctr Adv Nanosci, Dept Phys, San Diego, CA 92093 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[3] Univ Chile, Dept Phys, Santiago 7800024, Chile
[4] Univ Complutense Madrid, Dept Fis Mat, Madrid, Spain
关键词
Antiferromagnet; Morin transition; Coercivity Control; Hematite; Permalloy; Magnetic Thin Films; Interfacial Coupling; DEPENDENCE; SIZE;
D O I
10.1016/j.jmmm.2024.172024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interfacial effects between antiferromagnetic (AFM) and ferromagnetic (FM) materials have long been a center of magnetism studies. Aside from the exchange bias occurring at the AFM/FM interface, controlling the coercivity is another significant topic in magnetic recordings. The coercivity of FM materials is often determined through varying grain size, alloy composition, density of defects, etc., which is set during material growth and offers limited room for modification after growth. Hematite (alpha -Fe2O3) is an AFM material that undergoes a temperature-controlled spin-flip transition, the so-called Morin transition. This transition gives an extra degree of freedom making hematite an intriguing component to study the exchange coupling when interfaced with an FM material. In this work, changes in the magnetic properties of soft magnetic permalloy (Ni81Fe19,or Py) thin films grown on hematite were studied across the Morin transition. Surprisingly, these samples showed a remarkable change in coercivity during the Morin transition. We attribute this effect to the magnetic domain mixture of hematite during the Morin transition. Our findings present a novel method of controlling the coercivity of plain ferromagnetic thin films.
引用
收藏
页数:6
相关论文
共 14 条
[1]   Morin transition in hematite: Size dependence and thermal hysteresis [J].
Oezdemir, Oezden ;
Dunlop, David J. ;
Berquo, Thelma S. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2008, 9
[2]   Thermal hysteresis of Morin transition in hematite particles [J].
Suber, L. ;
Imperatori, P. ;
Mari, A. ;
Marchegiani, G. ;
Mansilla, M. Vasquez ;
Fiorani, D. ;
Plunkett, W. R. ;
Rinaldi, D. ;
Cannas, C. ;
Ennas, G. ;
Peddis, D. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (26) :6984-6989
[3]   MORIN TRANSITION STUDY OF HEMATITE POWDER SAMPLES - PRELIMINARY-RESULTS [J].
BECZEDEAK, T ;
VANDENBERGHE, RE ;
DEGRAVE, E .
NONEQUILIBRIUM MATERIALS, 1995, 103 :227-230
[4]   The effect of pressure on the Morin transition in hematite (α-Fe2O3) [J].
Parise, John B. ;
Locke, Darren R. ;
Tulk, Christopher A. ;
Swainson, Ian ;
Cranswick, Lachlan .
PHYSICA B-CONDENSED MATTER, 2006, 385 :391-393
[5]   Large Two-Magnon Raman Hysteresis Observed in a Magnetically Uncompensated Hematite Coating across the Morin Transition [J].
Lopez-Sanchez, Jesus ;
del Campo, Adolfo ;
Roman-Sanchez, Sara ;
Rodriguez de la Fuente, Oscar ;
Carmona, Noemi ;
Serrano, Aida .
COATINGS, 2022, 12 (04)
[6]   Morin Transition in Hematite Nanocrystals Self-Assembled Into Three-Dimensional Structures [J].
Luna, Carlos ;
Vega, Victor ;
Prida, Victor M. ;
Mendoza-Resendez, Raquel .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (09) :7571-7576
[7]   Thickness dependence of Morin transition temperature in iridium-doped hematite layers studied through nuclear resonant scattering [J].
Ko Mibu ;
Kazuaki Mikami ;
Masaaki Tanaka ;
Ryo Masuda ;
Yoshitaka Yoda ;
Makoto Seto .
Hyperfine Interactions, 2017, 238
[8]   Thickness dependence of Morin transition temperature in iridium-doped hematite layers studied through nuclear resonant scattering [J].
Mibu, Ko ;
Mikami, Kazuaki ;
Tanaka, Masaaki ;
Masuda, Ryo ;
Yoda, Yoshitaka ;
Seto, Makoto .
HYPERFINE INTERACTIONS, 2017, 238
[9]   Thermal hysteresis of spin reorientation at Morin transition in alkoxide derived hematite nanoparticles [J].
G.F. Goya ;
M. Veith ;
R. Rapalavicuite ;
H. Shen ;
S. Mathur .
Applied Physics A, 2005, 80 :1523-1526
[10]   Field-dependent Morin Transition and Temperature-Dependent Spin-flop in Synthetic Hematite Nanoparticles [J].
Obaidat, Ihab M. ;
Alaabed, Sulaiman ;
Al-Omari, Imad A. ;
Narayanaswamy, Venkatesha ;
Issa, Bashar ;
Khaleel, Abbas .
CURRENT NANOSCIENCE, 2020, 16 (06) :967-975