On the structural instability of non-hyperbolic limit cycles on planar polynomial vector fields

被引:2
作者
Santana, Paulo [1 ]
机构
[1] UNESP, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2024年
基金
巴西圣保罗研究基金会;
关键词
Structural stability; Limit cycles; Polynomial vector fields; STABILITY; BIFURCATION;
D O I
10.1007/s40863-024-00431-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that non-hyperbolic limit cycles are structurally unstable in the set of planar smooth and analytic vector fields. In the polynomial case, it is known only that limit cycles of even degree are structurally unstable. In this paper, we prove that non-hyperbolic limit cycles of odd degree are also structurally unstable in the polynomial case, if we consider Whitney's topology.
引用
收藏
页码:1605 / 1618
页数:14
相关论文
共 44 条
  • [1] Structural stability of planar quasi-homogeneous vector fields
    Algaba, A.
    Fuentes, N.
    Gamero, E.
    Garcia, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (01) : 212 - 226
  • [2] Andronov A. A., 1971, ISRAEL PROG SCI TRAN
  • [3] [Anonymous], 1973, Graduate Texts in Mathematics
  • [4] Artes J., 2018, Structurally Unstable Quadratic Vector Fields of Codimension One, DOI [10.1007/978-3-319-92117-4, DOI 10.1007/978-3-319-92117-4]
  • [5] Artes J., 1998, Am. Math. Soc., V639
  • [6] Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing One Finite Saddle-Node and a Separatrix Connection
    Artes, Joan C.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [7] Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node
    Artes, Joan C.
    Mota, Marcos C.
    Rezende, Alex C.
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (35) : 1 - 89
  • [8] Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing Either a Cusp Point or Two Finite Saddle-Nodes
    Artes, Joan C.
    Oliveira, Regilene D. S.
    Rezende, Alex C.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (04) : 1779 - 1821
  • [9] On structural stability of evolutionary stable strategies
    Bastos, Jefferson
    Buzzi, Claudio
    Santana, Paulo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 389 : 190 - 227
  • [10] Stability conditions for refractive partially integrable piecewise smooth vector fields
    Buzzi, Claudio A.
    Rodero, Ana Livia
    Teixeira, Marco A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 440