Finite supersolvable groups and Hall normally embedded subgroups of prime power order

被引:1
作者
Zheng, Weicheng [1 ]
Meng, Wei [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hall normally embedded; T-group; Supersolvable group; Solvable group;
D O I
10.1007/s11587-024-00873-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group. A groupGis called a T group if its every subnormal subgroup is normal. A subgroup H of G is called Hall normally embedded in G if His a Hallsub group of H-G, where H-G is the normal closure of H in G. Using the notion of Hallnormally embedded subgroups, we characterize supersolvable groups and solvableT-group. First, we prove that if every cyclic subgroup ofGof order prime or 4 isHall normally embedded in G, then G is supersolvable with a well defined structure.Second, we prove that an A-group G is supersolvable if and only if its Sylow subgroupsare products of cyclic Hall normally embedded subgroups ofG. Final, we show that G is a solvable T-group if and only if everyp-subgroup of Gis Hall normally embeddedinG, for all primes p is an element of pi(G)
引用
收藏
页码:1199 / 1206
页数:8
相关论文
共 20 条
  • [1] On finite solvable groups in which normality is a transitive relation
    Bianchi, M
    Mauri, AGB
    Herzog, M
    Verardi, L
    [J]. JOURNAL OF GROUP THEORY, 2000, 3 (02) : 147 - 156
  • [2] Csörgo P, 2001, GLASGOW MATH J, V43, P327
  • [3] On supersolvable groups and the nilpotator
    Csörgö, P
    Herzog, M
    [J]. COMMUNICATIONS IN ALGEBRA, 2004, 32 (02) : 609 - 620
  • [4] Finite group with Hall normally embedded minimal subgroups
    Cui, Liang
    Zheng, Weicheng
    Meng, Wei
    Lu, Jiakuan
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4280 - 4284
  • [5] Doerk K., 1992, FINITE SOLUBLE GROUP, DOI DOI 10.1515/9783110870138
  • [6] Gaschutz W., 1957, J. Reine Angew. Math, V198, P87, DOI DOI 10.1515/CRLL.1957.198.87
  • [7] Gorenstein D., 1982, Finite simple groups, DOI DOI 10.1007/978-1-4684-8497-7
  • [8] Guo PF, 2019, ARS COMBINATORIA, V146, P285
  • [9] Finite groups with Hall normally embedded subgroups
    Guo, Qinghong
    He, Xuanli
    Huang, Muhong
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (09)
  • [10] Huppert B., 1967, ENDLICHE GRUPPEN, DOI DOI 10.1007/978-3-642-64981-3