Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning

被引:3
|
作者
Ali, Aizaz [1 ]
Khan, Maqbool [1 ,2 ]
Khan, Khalil [3 ]
Khan, Rehan Ullah [4 ]
Aloraini, Abdulrahman [4 ]
机构
[1] Pak Austria Fachhochschule Inst Appl Sci & Technol, Dept IT & Comp Sci, Haripur 22620, Pakistan
[2] Software Competence Ctr Hagenberg, Softwarepark 32a, A-4232 Hagenberg, Austria
[3] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Comp Sci, Astana 010000, Kazakhstan
[4] Qassim Univ, Coll Comp, Dept Informat Technol, POB 1162, Buraydah, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 79卷 / 01期
关键词
Urdu sentiment analysis; convolutional neural networks; recurrent neural network; deep learning; natural language processing; neural networks; ROMAN URDU; REVIEWS;
D O I
10.32604/cmc.2024.048712
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understanding public opinion and user sentiment across diverse languages. While numerous scholars conduct sentiment analysis in widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grappling with resource -poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language, characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu, Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguistic features, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis a formidable undertaking. The limited availability of resources has fueled increased interest among researchers, prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu language sentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into five labels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments and emotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, the initial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such as newspapers, articles, and social media comments. Subsequent to this data collection, a thorough process of cleaning and preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deep learning models, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for both training and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning to optimize the models' efficacy. Evaluation metrics such as precision, recall, and the F1 -score are employed to assess the effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis, gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN, solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.
引用
收藏
页码:713 / 733
页数:21
相关论文
共 50 条
  • [41] Sentiment Analysis using Deep Learning in Cloud
    Raza, Muhammad Raheel
    Hussain, Walayat
    Tanyildizi, Erkan
    Varol, Asaf
    9TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSICS AND SECURITY (ISDFS'21), 2021,
  • [42] An Adversarial Joint Learning Model for Low-Resource Language Semantic Textual Similarity
    Tian, Junfeng
    Lan, Man
    Wu, Yuanbin
    Wang, Jingang
    Qiu, Long
    Li, Sheng
    Jun, Lang
    Si, Luo
    ADVANCES IN INFORMATION RETRIEVAL (ECIR 2018), 2018, 10772 : 89 - 101
  • [43] Natural Language Processing for Arabic Sentiment Analysis: A Systematic Literature Review
    Al Katat, Souha
    Zaki, Chamseddine
    Hazimeh, Hussein
    El Bitar, Ibrahim
    Angarita, Rafael
    Trojman, Lionel
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (05) : 576 - 594
  • [44] A Study of Sentiment Analysis Using Deep Learning Techniques on Thai Twitter Data
    Vateekul, Peerapon
    Koomsubha, Thanabhat
    2016 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2016, : 70 - 75
  • [45] Big Data: Deep Learning for financial sentiment analysis
    Sohangir S.
    Wang D.
    Pomeranets A.
    Khoshgoftaar T.M.
    Journal of Big Data, 5 (1)
  • [46] A comprehensive review of deep learning for natural language processing
    Bouraoui, Amal
    Jamoussi, Salma
    Ben Hamadou, Abdelmajid
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2022, 14 (02) : 149 - 182
  • [47] A Survey of the Usages of Deep Learning for Natural Language Processing
    Otter, Daniel W.
    Medina, Julian R.
    Kalita, Jugal K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (02) : 604 - 624
  • [48] Are Deep Learning Approaches Suitable for Natural Language Processing?
    Alshahrani, S.
    Kapetanios, E.
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2016, 2016, 9612 : 343 - 349
  • [49] Sentiment Analysis of Modern Chinese Literature Based on Deep Learning
    Shen, Xiaohui
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (06) : 1565 - 1574
  • [50] End-to-End Aspect Extraction and Aspect-Based Sentiment Analysis Framework for Low-Resource Languages
    Aivatoglou, Georgios
    Fytili, Alexia
    Arampatzis, Georgios
    Zaikis, Dimitrios
    Stylianou, Nikolaos
    Vlahavas, Ioannis
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 841 - 858