MOF-derived SnO2 nanoparticles for realization of ultrasensitive and highly selective NO2 gas sensing

被引:5
|
作者
Majhi, Sanjit Manohar [1 ,2 ,3 ]
Kim, Jin-Young [2 ]
Mirzaei, Ali [4 ]
Surya, Sandeep G. [5 ]
Kim, Hyoun Woo [3 ]
Kim, Sang Sub [2 ]
机构
[1] New York Univ Abu Dhabi, Ctr Smart Engn Mat, Smart Mat Lab SML, Abu Dhabi, U Arab Emirates
[2] Inha Univ, Dept Mat Sci & Engn, Incheon 22212, South Korea
[3] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea
[4] Shiraz Univ Technol, Dept Mat Sci & Engn, Shiraz 7155713876, Iran
[5] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr, Comp Elect & Math Sci & Engn Div, Sensors Lab, Thuwal, Saudi Arabia
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2024年 / 419卷
基金
新加坡国家研究基金会;
关键词
MOF-derived; SnO2; nanoparticles; Gas sensor; NO2; gas; Room temperature; Sensing mechanism; SENSORS; PERFORMANCE; CO;
D O I
10.1016/j.snb.2024.136369
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Herein, SnO2 nanoparticles (NPs) were synthesized from a Sn-metal organic framework (MOF) through a hydrothermal synthesis approach for NO2 sensing studies. The expected phase, morphology and composition of the SnO2 NPs were demonstrated via different characterizations. The individual sizes of SnO2 NPs were similar to 20-30 nm, and they had a high surface area (185.31 m(2)/g). The sensing properties were measured at various temperatures towards NO2 gas. It showed very high responses of 240.60 and 3984.98-10 and 100 ppm NO2, respectively, at 200 degrees C. Also, it still displayed a high response of 47.11-100 ppm NO2 gas at 25 degrees C. Enhanced response of MOF-derived SnO2 NPs gas sensor was owing to the high surface area of the SnO2 NPs, the presence of oxygen vacancies, formation of plenty of SnO2-SnO2 homojunctions and the creation of SnO/SnO2 heterojunctions. The synthesis method employed in this study led to the preparation of high surface area SnO2 NPs that can be used for preparing other metal oxides for the development of sensors.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] SnO2 (n)-NiO (p) composite nanowebs: Gas sensing properties and sensing mechanisms
    Kim, Jae-Hun
    Lee, Jae-Hyoung
    Mirzaei, Ali
    Kim, Hyoun Woo
    Kim, Sang Sub
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 258 : 204 - 214
  • [32] Enhancement of gas sensing by implantation of Sb-ions in SnO2 nanowires
    Kim, Jae-Hun
    Mirzaei, Ali
    Kim, Jin-Young
    Lee, Jae-Hyoung
    Kim, Hyoun Woo
    Hishita, Shunich
    Kim, Sang Sub
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 304
  • [33] Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates
    Zhu, Xiangyi
    Guo, Yongcai
    Ren, Hao
    Gao, Chao
    Zhou, Yong
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 248 : 560 - 570
  • [34] Laterally Grown SnO2 Nanowires and their NO2 Gas Sensing Characteristics
    Park, Jae-Hwan
    Lim, Dong-Gun
    Choi, Young-Jin
    Kim, Dong-Wan
    Choi, Kyoung-Jin
    Park, Jae-Gwan
    2007 7TH IEEE CONFERENCE ON NANOTECHNOLOGY, VOL 1-3, 2007, : 1058 - +
  • [35] Nanostructured SnO2 thin films for NO2 gas sensing applications
    Khuspe, G. D.
    Sakhare, R. D.
    Navale, S. T.
    Chougule, M. A.
    Kolekar, Y. D.
    Mulik, R. N.
    Pawar, R. C.
    Lee, C. S.
    Patil, V. B.
    CERAMICS INTERNATIONAL, 2013, 39 (08) : 8673 - 8679
  • [36] Enhancement of selective NO2 gas sensing via Xenon ion irradiation of ZnO nanoparticles
    Shin, Ka Yoon
    Mirzaei, Ali
    Oum, Wansik
    Yu, Dong Jae
    Kang, Sukwoo
    Kim, Eun Bi
    Kim, Hyeong Min
    Kim, Sang Sub
    Kim, Hyoun Woo
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 374
  • [37] SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature
    Wang, Pengtao
    Ge, Wanyin
    Jia, Xiaohua
    Huang, Jingtao
    Zhang, Xinmeng
    Lu, Jing
    FRONTIERS OF MATERIALS SCIENCE, 2022, 16 (03)
  • [38] Tuning the structural and NO2 gas sensing properties of SnO2 films via In doping
    Addie, Ali J.
    Batros, Shatha Sh.
    Hassan, Azhar I.
    THIN SOLID FILMS, 2025, 818
  • [39] Realization of low-temperature and selective NO2 sensing of SnO2 nanowires via synergistic effects of Pt decoration and Bi2O3 branching
    Bang, Jae Hoon
    Mirzaei, Ali
    Han, Seungmin
    Lee, Ha Young
    Shin, Ka Yoon
    Kim, Sang Sub
    Kim, Hyoun Woo
    CERAMICS INTERNATIONAL, 2021, 47 (04) : 5099 - 5111
  • [40] Selective Improvement of NO2 Gas Sensing Behavior in SnO2 Nanowires by Ion-Beam Irradiation
    Kwon, Yong Jung
    Kang, Sung Yong
    Wu, Ping
    Peng, Yuan
    Kim, Sang Sub
    Kim, Hyoun Woo
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (21) : 13646 - 13658