MODELING OCEANIC VARIABLES WITH GRAPH-GUIDED NETWORKS FOR IRREGULARLY SAMPLED MULTIVARIATE TIME SERIES

被引:0
作者
Coelho, Jefferson F. [1 ,2 ]
de Barros, Marcel R. [1 ,2 ]
Netto, Caio F. D. [1 ,3 ]
Moreno, Felipe M. [1 ,2 ]
de Freitas, Lucas P. [1 ,2 ]
Mathias, Marlon S. [2 ,4 ]
Cozman, Fabio G. [1 ,2 ,3 ]
Dottori, Marcelo [2 ,5 ]
Gomi, Edson S. [1 ,2 ]
Tannuri, Eduardo A. [1 ,2 ]
Costa, Anna H. R. [1 ,2 ,3 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo, Brazil
[2] Univ Sao Paulo, Ctr Artificial Intelligence C4AI, Sao Paulo, Brazil
[3] Univ Sao Paulo, Ctr Ciencia Dados C2D, Sao Paulo, Brazil
[4] Univ Sao Paulo, Inst Adv Studies, Sao Paulo, Brazil
[5] Univ Sao Paulo, Inst Oceanog, Sao Paulo, Brazil
来源
PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 5 | 2023年
基金
巴西圣保罗研究基金会;
关键词
Dynamic Graph Neural Networks; Physics-Informed Machine Learning; Ocean Modeling;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Forecasts of ocean dynamic variables are essential to ensure safe operations at sea and in coastal regions. However, one difficulty with such forecasts is the need to handle multiple scales and repetitions in data, as well as noise caused by sensors malfunction. We describe a data-driven approach to predict oceanic variables under those circumstances; we take as a case study the prediction of water current velocity and sea surface height in an estuarine system in the southeastern coast of Brazil. We propose a generic method that can be applied to a variety of practical cases with little to no adaption, using a Graph Neural Network to model the system dynamics. We provide evidence that our method produces robust forecasts. It does so by employing forecast data from the state-of-the-art physics-based model "Santos Operational Forecasting System" (SOFS). The approach has lower computational costs and requires almost no domain-specific knowledge. We compare our model with SOFS and ARIMA-like forecast models in experiments.
引用
收藏
页数:10
相关论文
共 35 条
[1]  
Alon Uri, 2021, INT C LEARN REPR
[2]  
Battaglia PW, 2016, ADV NEUR IN, V29
[3]  
Blumberg A. F., 1987, ThreeDimensional Ocean Models, V4, P1, DOI [10.1029/CO004p0001, DOI 10.1029/CO004P0001]
[4]  
Brody S, 2022, Arxiv, DOI [arXiv:2105.14491, DOI 10.48550/ARXIV.2105.14491]
[5]  
Cao DF, 2020, ADV NEUR IN, V33
[6]   TIME-SERIES SEGMENTATION - A SLIDING WINDOW APPROACH [J].
CHU, CSJ .
INFORMATION SCIENCES, 1995, 85 (1-3) :147-173
[7]   An operational forecasting system for physical processes in the Santos-Sao Vicente-Bertioga Estuarine System, Southeast Brazil [J].
Costa, Carine G. R. ;
Leite, Jose Roberto B. ;
Castro, Belmiro M. ;
Blumberg, Alan F. ;
Georgas, Nickitas ;
Dottori, Marcelo ;
Jordi, Antoni .
OCEAN DYNAMICS, 2020, 70 (02) :257-271
[8]  
Cranmer M., 2020, Advances in Neural Information Processing Systems, V33, P17429
[9]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778