Solution-Phase Epitaxial Growth of Quasi-Monocrystalline Cuprous Oxide on Metal Nanowires

被引:27
作者
Sciacca, Beniamino [1 ]
Mann, Sander A. [1 ]
Tichelaar, Frans D. [2 ]
Zandbergen, Henny W. [2 ]
van Huis, Marijn A. [2 ,3 ,4 ]
Garnett, Erik C. [1 ]
机构
[1] FOM Inst AMOLF, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Natl Ctr HREM, NL-2628 CJ Delft, Netherlands
[3] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 CC Utrecht, Netherlands
[4] Univ Utrecht, Ctr Extreme Matter & Emergent Phenomena, NL-3584 CC Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
Core-shell nanowire; epitaxial growth; solution phase synthesis; metal-semiconductor; heterostructures; quasi-monocrystalline cuprous oxide (Cu2O); single nanowire quantitative optical absorption measurements; CORE-SHELL; SOLAR-CELLS; LOW-COST; PHOTOVOLTAICS; EFFICIENCY; SILICON; SEMICONDUCTOR; NANOPARTICLES; NANOCRYSTALS;
D O I
10.1021/nl502831t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal-semiconductor core-shell nanowires. We demonstrate a solution-phase route to obtain stable core-shell metal-Cu2O nanowires with outstanding control over the resulting structure, in which the noble metal nanowire is used as the nucleation site for epitaxial growth of quasi-monocrystalline Cu2O shells at room temperature in aqueous solution. We use X-ray and electron diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, and absorption spectroscopy, as well as density functional theory calculations, to characterize the core-shell nanowires and verify their structure. Metal-semiconductor core-shell nanowires offer several potential advantages over thin film and traditional nanowire architectures as building blocks for photovoltaics, including efficient carrier collection in radial nanowire junctions and strong optical resonances that can be tuned to maximize absorption.
引用
收藏
页码:5891 / 5898
页数:8
相关论文
共 44 条
[11]   Nanowire Solar Cells [J].
Garnett, Erik C. ;
Brongersma, Mark L. ;
Cui, Yi ;
McGehee, Michael D. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 41, 2011, 41 :269-295
[12]   LIMITS ON THE OPEN-CIRCUIT VOLTAGE AND EFFICIENCY OF SILICON SOLAR-CELLS IMPOSED BY INTRINSIC AUGER PROCESSES [J].
GREEN, MA .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1984, 31 (05) :671-678
[13]  
Gu Q., 2011, ARXIV10125338
[14]   Significant Enhancement in Photocatalytic Reduction of Water to Hydrogen by Au/Cu2ZnSnS4 Nanostructure [J].
Ha, Enna ;
Lee, Lawrence Yoon Suk ;
Wang, Jingchuan ;
Li, Fenghua ;
Wong, Kwok-Yin ;
Tsang, Shik Chi Edman .
ADVANCED MATERIALS, 2014, 26 (21) :3496-3500
[15]  
Jang J. I., 2011, OPTOELECTRONICS MAT, DOI [10.5772/18416, DOI 10.5772/18416]
[16]   Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications [J].
Jiang, Ruibin ;
Li, Benxia ;
Fang, Caihong ;
Wang, Jianfang .
ADVANCED MATERIALS, 2014, 26 (31) :5274-5309
[17]   Copper Can Still Be Epitaxially Deposited on Palladium Nanocrystals To Generate Core-Shell Nanocubes Despite Their Large Lattice Mismatch [J].
Jin, Mingshang ;
Zhang, Hui ;
Wang, Jinguo ;
Zhong, Xiaolan ;
Lu, Ning ;
Li, Zhiyuan ;
Xie, Zhaoxiong ;
Kim, Moon J. ;
Xia, Younan .
ACS NANO, 2012, 6 (03) :2566-2573
[18]   40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells [J].
King, R. R. ;
Law, D. C. ;
Edmondson, K. M. ;
Fetzer, C. M. ;
Kinsey, G. S. ;
Yoon, H. ;
Sherif, R. A. ;
Karam, N. H. .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[19]   ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1993, 47 (01) :558-561
[20]   Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) :15-50