The Well-Posedness for the Distributed-Order Wave Equation on RN

被引:0
作者
Zhou, Yan Ling [1 ]
Zhou, Yong [2 ]
Xi, Xuan-Xuan [1 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Wave equation; Distributed-order integral operator; Well-posedness; LAPLACE;
D O I
10.1007/s12346-023-00915-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Distributed-order calculus can summarize the intrinsic multiscale effects of integer and fractional order operators, and construct a more complex physical model. The paper is devoted to study the time distributed-order wave equation. First, we give the definition of distributed-order integral operators I-(mu) in alpha is an element of[1,2], and from the definition of the integral operator, we found that the operator has similar properties to the fractional integral operators. Next, according to the properties of the distributed-order integral operator and Laplace transform, we obtain the expression of the solution of the distributed-order wave equation. Then we use the resolvent operator to estimate the solution operators. At last, we further studied the liner or semilinear wave problem with the distributed-order derivative on RN and used the contraction mapping principle to prove the existence and uniqueness of mild solution.
引用
收藏
页数:22
相关论文
共 26 条
[1]   Revisiting (2+1)-dimensional Burgers' dynamical equations: analytical approach and Reynolds number examination [J].
Alharbi, Rawan ;
Alshaery, A. A. ;
Bakodah, H. O. ;
Nuruddeen, R., I ;
Gomez-Aguilar, J. F. .
PHYSICA SCRIPTA, 2023, 98 (08)
[2]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[3]  
Amann Herbert, 1995, Monographs in Mathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[4]   Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1893-1917
[5]   Time distributed-order diffusion-wave equation. I. Volterra-type equation [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1869-1891
[6]   The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation [J].
Bobylev, AV ;
Cercignani, C .
APPLIED MATHEMATICS LETTERS, 2002, 15 (07) :807-813
[7]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[8]   Numerical analysis for distributed-order differential equations [J].
Diethelm, Kai ;
Ford, Neville J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) :96-104
[9]   Applications of Distributed-Order Fractional Operators: A Review [J].
Ding, Wei ;
Patnaik, Sansit ;
Sidhardh, Sai ;
Semperlotti, Fabio .
ENTROPY, 2021, 23 (01) :1-42
[10]   Generators of Analytic Resolving Families for Distributed Order Equations and Perturbations [J].
Fedorov, Vladimir E. .
MATHEMATICS, 2020, 8 (08)