Strain-invariant stretchable radio-frequency electronics

被引:0
|
作者
Kim, Sun Hong [1 ]
Basir, Abdul [1 ]
Avila, Raudel [2 ]
Lim, Jaeman [1 ]
Hong, Seong Woo [1 ]
Choe, Geonoh [1 ]
Shin, Joo Hwan [3 ,4 ]
Hwang, Jin Hee [1 ]
Park, Sun Young [1 ]
Joo, Jiho [5 ]
Lee, Chanmi [5 ]
Choi, Jaehoon [1 ]
Lee, Byunghun [1 ,6 ]
Choi, Kwang-Seong [5 ]
Jung, Sungmook [7 ]
Kim, Tae-il [3 ,4 ]
Yoo, Hyoungsuk [1 ,6 ]
Jung, Yei Hwan [1 ,8 ]
机构
[1] Hanyang Univ, Dept Elect Engn, Seoul, South Korea
[2] Rice Univ, Dept Mech Engn, Houston, TX USA
[3] Sungkyunkwan Univ SKKU, Sch Chem Engn, Suwon, South Korea
[4] Sungkyunkwan Univ SKKU, BICS, Suwon, South Korea
[5] Elect & Telecommun Res Inst, Superintelligence Creat Res Lab, Daejeon, South Korea
[6] Hanyang Univ, Dept Biomed Engn, Seoul, South Korea
[7] Korea Res Inst Chem Technol, Div Adv Mat, Daejeon, South Korea
[8] Hanyang Univ, Inst Nano Sci & Technol, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
FREQUENCY; WIRELESS; CIRCUITS; NETWORK;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics(1-7). However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains(8-15). Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin. Here we present strain-invariant stretchable RF electronics capable of completely maintaining the original RF properties under various elastic strains using a 'dielectro-elastic' material as the substrate. Dielectro-elastic materials have physically tunable dielectric properties that effectively avert frequency shifts arising in interfacing RF electronics. Compared with conventional stretchable substrate materials, our material has superior electrical, mechanical and thermal properties that are suitable for high-performance stretchable RF electronics. In this paper, we describe the materials, fabrication and design strategies that serve as the foundation for enabling the strain-invariant behaviour of key RF components based on experimental and computational studies. Finally, we present a set of skin-interfaced wireless healthcare monitors based on strain-invariant stretchable RF electronics with a wireless operational distance of up to 30m under strain.
引用
收藏
页码:1047 / +
页数:20
相关论文
共 50 条
  • [1] Strain-invariant stretchable radio-frequency electronics
    Kim, Sun Hong
    Basir, Abdul
    Avila, Raudel
    Lim, Jaeman
    Hong, Seong Woo
    Choe, Geonoh
    Shin, Joo Hwan
    Hwang, Jin Hee
    Park, Sun Young
    Joo, Jiho
    Lee, Chanmi
    Choi, Jaehoon
    Lee, Byunghun
    Choi, Kwang-Seong
    Jung, Sungmook
    Kim, Tae-il
    Yoo, Hyoungsuk
    Jung, Yei Hwan
    NATURE, 2024, 629 (8014) : 1047 - +
  • [2] A Stretchable Radio-Frequency Strain Sensor Using Screen Printing Technology
    Jeong, Heijun
    Lim, Sungjoon
    SENSORS, 2016, 16 (11):
  • [3] Microfluidic Stretchable Radio-Frequency Devices
    Wu, Zhigang
    Hjort, Klas
    Jeong, Seung Hee
    PROCEEDINGS OF THE IEEE, 2015, 103 (07) : 1211 - 1225
  • [4] 3D Woven Liquid Metals for Radio-Frequency Stretchable Circuits
    Rahman, Md Saifur
    Tiwari, Anand P.
    Agnew, Simon A.
    Scheideler, William J.
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (12):
  • [5] Soft Radio-Frequency Identification Sensors: Wireless Long-Range Strain Sensors Using Radio-Frequency Identification
    Teng, Lijun
    Pan, Kewen
    Nemitz, Markus P.
    Song, Rui
    Hu, Zhirun
    Stokes, Adam A.
    SOFT ROBOTICS, 2019, 6 (01) : 82 - 94
  • [6] A strain-isolation design for stretchable electronics
    Wu, Jian
    Li, Ming
    Chen, Wei-Qiu
    Kim, Dae-Hyeong
    Kim, Yun-Soung
    Huang, Yong-Gang
    Hwang, Keh-Chih
    Kang, Zhan
    Rogers, John A.
    ACTA MECHANICA SINICA, 2010, 26 (06) : 881 - 888
  • [7] Carbon Nanotube FET Technology for Radio-Frequency Electronics: State-of-the-Art Overview
    Schroeter, Michael
    Claus, Martin
    Sakalas, Paulius
    Haferlach, M.
    Wang, Dawei
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2013, 1 (01): : 9 - 20
  • [8] An analytical model of strain isolation for stretchable and flexible electronics
    Cheng, H.
    Wu, J.
    Li, M.
    Kim, D. -H.
    Kim, Y. -S.
    Huang, Y.
    Kang, Z.
    Hwang, K. C.
    Rogers, J. A.
    APPLIED PHYSICS LETTERS, 2011, 98 (06)
  • [9] Recent Advances on Radio-Frequency Design in Cognitive Radio
    El Misilmani, H. M.
    Abou-Shahine, M. Y.
    Nasser, Y.
    Kabalan, K. Y.
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2016, 2016
  • [10] Black Phosphorus Radio-Frequency Transistors
    Wang, Han
    Wang, Xiaomu
    Xia, Fengnian
    Wang, Luhao
    Jiang, Hao
    Xia, Qiangfei
    Chin, Matthew L.
    Dubey, Madan
    Han, Shu-jen
    NANO LETTERS, 2014, 14 (11) : 6424 - 6429