Semi-supervised pathological image segmentation via cross distillation of multiple attentions and Seg-CAM consistency

被引:2
|
作者
Zhong, Lanfeng [1 ]
Luo, Xiangde [1 ,2 ]
Liao, Xin [3 ]
Zhang, Shaoting [1 ,2 ]
Wang, Guotai [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Shanghai AI Lab, Shanghai, Peoples R China
[3] Sichuan Univ, West China Univ Hosp 2, Dept Pathol, Chengdu 610041, Peoples R China
关键词
Semi-supervised learning; Knowledge distillation; Attention; Multi-task learning; GLAND SEGMENTATION;
D O I
10.1016/j.patcog.2024.110492
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions and Seg-CAM Consistency (CDMA+) to effectively leverage unlabeled images. First, we propose a Multi-attention Tri-decoder Network (MTNet) that consists of a shared encoder and three decoders, with each decoder using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Second, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoders, allowing them to learn from each other's soft labels to mitigate the negative impact of incorrect pseudo labels during training. Subsequently, motivated by the observation that the Class Activation Maps (CAMs) derived from the classification task could provide a rough segmentation, we employ an auxiliary classification head and introduce a consistency constraint between the CAM and segmentation results, i.e. Seg-CAM consistency. Additionally, uncertainty minimization is applied to the average prediction of the three decoders, which further regularizes predictions on unlabeled images and encourages inter-decoder consistency. Our proposed CDMA+ was compared with eight state -of -the -art SSL methods on two public pathological image datasets, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Semi-supervised Pathological Image Segmentation via Cross Distillation of Multiple Attentions
    Zhong, Lanfeng
    Liao, Xin
    Zhang, Shaoting
    Wang, Guotai
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI, 2023, 14225 : 570 - 579
  • [2] CROSS-IMAGE DISTILLATION FOR SEMI-SUPERVISED SEMANTIC SEGMENTATION
    Zhang, Nan
    Xiao, Fan
    Hou, Junlin
    Zhao, Ruiwei
    Zhang, Xiaobo
    Feng, Rui
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6745 - 6749
  • [3] Semi-supervised Histological Image Segmentation via Hierarchical Consistency Enforcement
    Jin, Qiangguo
    Cui, Hui
    Sun, Changming
    Zheng, Jiangbin
    Wei, Leyi
    Fang, Zhenyu
    Meng, Zhaopeng
    Su, Ran
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 3 - 13
  • [4] Cross Task Temporal Consistency for Semi-supervised Medical Image Segmentation
    Jeevan, Govind
    Pawan, S. J.
    Rajan, Jeny
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 : 140 - 150
  • [5] Deep Mutual Distillation for Semi-supervised Medical Image Segmentation
    Xie, Yushan
    Yin, Yuejia
    Li, Qingli
    Wang, Yan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 540 - 550
  • [6] Decoupled Consistency for Semi-supervised Medical Image Segmentation
    Chen, Faquan
    Fei, Jingjing
    Chen, Yaqi
    Huang, Chenxi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 551 - 561
  • [7] Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations
    Bortsova, Gerda
    Dubost, Florian
    Hogeweg, Laurens
    Katramados, Ioannis
    de Bruijne, Marleen
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 810 - 818
  • [8] Semi-Supervised Metallographic Image Segmentation via Consistency Regularization and Contrastive Learning
    Chen, Fan
    Zhang, Yiming
    Guo, Yaolin
    Liu, Zhen
    Du, Shiyu
    IEEE ACCESS, 2023, 11 : 87398 - 87408
  • [9] Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency
    Luo, Xiangde
    Wang, Guotai
    Liao, Wenjun
    Chen, Jieneng
    Song, Tao
    Chen, Yinan
    Zhang, Shichuan
    Metaxas, Dimitris N.
    Zhang, Shaoting
    MEDICAL IMAGE ANALYSIS, 2022, 80
  • [10] Pair Shuffle Consistency for Semi-supervised Medical Image Segmentation
    He, Jianjun
    Cai, Chenyu
    Li, Qiong
    Ma, Andy J.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VIII, 2024, 15008 : 489 - 499