Prospects of silicide contacts for silicon quantum electronic devices

被引:2
作者
Tsoukalas, K. [1 ]
Schupp, F. [1 ]
Sommer, L. [1 ]
Bouquet, I. [2 ]
Mergenthaler, M. [1 ]
Paredes, S. [1 ]
Trivino, N. Vico [1 ]
Luisier, M. [1 ]
Salis, G. [1 ]
Harvey-Collard, P. [3 ]
Zumbuhl, D.
Fuhrer, A. [1 ]
机构
[1] IBM Res Europe Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[3] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
KINETICS; STATES; SI;
D O I
10.1063/5.0213131
中图分类号
O59 [应用物理学];
学科分类号
摘要
Metal contacts in semiconductor quantum electronic devices can offer advantages over doped contacts, primarily due to their reduced fabrication complexity and lower temperature requirements during processing. Some metals can also facilitate ambipolar device operation or form superconducting contacts. Furthermore, a sharp metal-semiconductor interface allows for contact placement in close proximity to the active device area avoiding damage caused by dopant implantation. However, in the case of gate-defined quantum dots in intrinsic silicon, the formation of a Schottky barrier at the silicon-metal interface can lead to large, nonlinear contact resistances at cryogenic temperatures. We investigate this issue by examining hole transport through metal oxide-semiconductor transistors with platinum silicide contacts on intrinsic silicon substrates. We extract the contact and channel resistances as a function of temperature and improve the cryogenic conductance of the device by more than an order of magnitude by implementing meander-shaped contacts. In addition, we observe signatures of enhanced transport through localized defect states, which we attribute to platinum clusters in the depletion region of the Schottky contacts that form during the silicidation process. These results showcase the prospects of silicide contacts in the context of cryogenic quantum devices and address associated challenges.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Study of optical and luminescence properties of silicon - semiconducting silicide - silicon multilayer nanostructures [J].
Galkin, N. G. ;
Galkin, K. N. ;
Dotsenko, S. A. ;
Goroshko, D. L. ;
Shevlyagin, A. V. ;
Chusovitin, E. A. ;
Chernev, I. M. .
XXV-TH CONGRESS ON SPECTROSCOPY, 2017, 132
[22]   Structural, electronic and optical properties of model silicon quantum dots: A computational study [J].
Bondwal, Sapna ;
Debnath, Pallavi ;
Thankachan, Pompozhi Protasis .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 103 :194-200
[23]   Electronic structure of substituted catecholate complexes of hexacoordinated silicon: a quantum chemical study [J].
Buikin, P. A. ;
Vologzhanina, A. V. ;
Arkhipov, D. E. ;
Korlyukov, A. A. .
RUSSIAN CHEMICAL BULLETIN, 2022, 71 (06) :1111-1122
[24]   Real-Time TEM Observation of the Role of Defects on Nickel Silicide Propagation in Silicon Nanowires [J].
Adegoke, Temilade Esther ;
Bekarevich, Raman ;
Geaney, Hugh ;
Belochapkine, Sergey ;
Bangert, Ursel ;
Ryan, Kevin M. .
ACS NANO, 2024, 18 (14) :10270-10278
[25]   Effect of Erbium Silicide Crystallinity for Low Barrier Contact between Erbium Silicide and n-type Silicon [J].
Tanaka, Hiroaki ;
Teramoto, Akinobu ;
Sugawa, Shigetoshi ;
Ohmi, Tadahiro .
DIELECTRIC MATERIALS AND METALS FOR NANOELECTRONICS AND PHOTONICS 10, 2012, 50 (04) :343-348
[26]   Engineering the Electron Transport of Silicon-Based Molecular Electronic Devices via Molecular Dipoles [J].
Gergel-Hackett, Nadine ;
Aguilar, Izath ;
Richter, Curt A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (49) :21708-21714
[27]   Silicide Formation in Bilayer Ultrathin Iron and Cobalt Films on Silicon [J].
Gomoyunova, M. V. ;
Grebenyuk, G. S. ;
Pronin, I. I. .
TECHNICAL PHYSICS, 2014, 59 (10) :1492-1498
[28]   Fabrication of silicon-nanocrystals-embedded silicon oxide passivating contacts [J].
Tsubata, Ryohei ;
Gotoh, Kazuhiro ;
Kurokawa, Yasuyoshi ;
Usami, Noritaka .
2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, :969-972
[29]   Advanced Current-Voltage Model of Electrical Contacts to GaAs- and Ge-Based Active Silicon Photonic Devices [J].
Hsieh, Ping-Yi ;
O'Sullivan, Barry ;
Tsiara, Artemisia ;
Truijen, Brecht ;
Lagrain, Pieter ;
Wouters, Lennaert ;
Yudistira, Didit ;
Kunert, Bernardette ;
Van Campenhout, Joris ;
De Wolf, Ingrid .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (08) :4274-4279
[30]   Thermal decomposition of PTFE in the presence of silicon, calcium silicide, ferrosilicon and iron [J].
A. Książczak ;
Henryka Boniuk ;
S. Cudziło .
Journal of Thermal Analysis and Calorimetry, 2003, 74 :569-574