Global Weighted Lorentz Estimates of Oblique Tangential Derivative Problems for Weakly Convex Fully Nonlinear Operators

被引:0
|
作者
Bessa, Junior da S. [1 ]
Ricarte, Gleydson C. [1 ]
机构
[1] Univ Fed Ceara, Dept Math, Campus Pici Bloco 914, BR-60455760 Fortaleza, Ceara, Brazil
关键词
Hessian estimates; Weighted Lorentz spaces; Obstacle problem; oblique boundary conditions; relaxed convexity assumptions; LINEAR ELLIPTIC-EQUATIONS; LIPSCHITZ REGULARITY; VISCOSITY SOLUTIONS;
D O I
10.1007/s11118-024-10156-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we develop weighted Lorentz-Sobolev estimates for viscosity solutions of fully nonlinear elliptic equations with oblique boundary condition under weakened convexity conditions in the following configuration: F(D2u,Du,u,x)=f(x)in Omega beta<middle dot>Du+gamma u=gon partial derivative Omega,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{array}{rclcl} F(D<^>2u,Du,u,x) & =& f(x)& \text {in} & \Omega \\ \beta \cdot Du + \gamma u& =& g & \text {on}& \partial \Omega ,\end{array}\right. $$\end{document}where Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{n}$$\end{document} (n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}), under suitable assumptions on the source term f, data beta,gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta , \gamma $$\end{document} and g. In addition, we obtain Lorentz-Sobolev estimates for solutions to the obstacle problem and others applications.
引用
收藏
页码:817 / 842
页数:26
相关论文
共 9 条