Deciphering the gut microbiome: The revolution of artificial intelligence in microbiota analysis and intervention

被引:20
作者
Abavisani, Mohammad [1 ]
Khoshrou, Alireza [1 ]
Foroushan, Sobhan Karbas [1 ]
Ebadpour, Negar [2 ]
Sahebkar, Amirhossein [3 ,4 ]
机构
[1] Mashhad Univ Med Sci, Student Res Comm, Mashhad, Iran
[2] Mashhad Univ Med Sci, Immunol Res Ctr, Mashhad, Iran
[3] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Biotechnol Res Ctr, Mashhad, Iran
[4] Mashhad Univ Med Sci, Appl Biomed Res Ctr, Mashhad, Iran
关键词
Artificial intelligence; Deep learning; Gastrointestinal microbiome; Machine learning; Metagenomics; MACHINE; CLASSIFICATION;
D O I
10.1016/j.crbiot.2024.100211
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The human gut microbiome is an intricate ecosystem with profound implications for host metabolism, immune function, and neuroendocrine activity. Over the years, studies have strived to decode this microbial universe, especially its interactions with human health and underlying metabolic processes. Traditional analyses often struggle with the complex interplay within the microbiome due to presumptions of microbial independence. In response, machine learning (ML) and deep learning (DL) provide advanced multivariate and non-linear analytical tools that adeptly capture the complex interactions within the microbiota. With the influx of data from metagenomic next-generation sequencing (mNGS), there's an increasing reliance on these artificial intelligence (AI) subsets to derive actionable insights. This review delves deep into the cutting-edge ML techniques tailored for human gut microbiota research. It further underscores the potential of gut microbiota in shaping clinical diagnostics, prognosis, and intervention strategies, pointing to a future where computational methods bridge the gap between microbiome knowledge and targeted health interventions.
引用
收藏
页数:16
相关论文
共 156 条
[1]   The diagnostic potential and barriers of microbiome based therapeutics [J].
Acharjee, Animesh ;
Singh, Utpreksha ;
Choudhury, Saptamita Paul ;
Gkoutos, Georgios, V .
DIAGNOSIS, 2022, 9 (04) :411-420
[2]   The k-means Algorithm: A Comprehensive Survey and Performance Evaluation [J].
Ahmed, Mohiuddin ;
Seraj, Raihan ;
Islam, Syed Mohammed Shamsul .
ELECTRONICS, 2020, 9 (08) :1-12
[3]   Performance Investigation of Principal Component Analysis for Intrusion Detection System Using Different Support Vector Machine Kernels [J].
Almaiah, Mohammed Amin ;
Almomani, Omar ;
Alsaaidah, Adeeb ;
Al-Otaibi, Shaha ;
Bani-Hani, Nabeel ;
Al Hwaitat, Ahmad K. ;
Al-Zahrani, Ali ;
Lutfi, Abdalwali ;
Awad, Ali Bani ;
Aldhyani, Theyazn H. H. .
ELECTRONICS, 2022, 11 (21)
[4]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[5]   Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered [J].
Amarasiri, Mohan ;
Sano, Daisuke ;
Suzuki, Satoru .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2020, 50 (19) :2016-2059
[6]   Evaluation of the gut microbiome in association with biological signatures of inflammation in murine polytrauma and shock [J].
Appiah, Sandra A. ;
Foxx, Christine L. ;
Langgartner, Dominik ;
Palmer, Annette ;
Zambrano, Cristian A. ;
Braumueller, Sonja ;
Schaefer, Evan J. ;
Wachter, Ulrich ;
Elam, Brooke L. ;
Radermacher, Peter ;
Stamper, Christopher E. ;
Heinze, Jared D. ;
Salazar, Stephanie N. ;
Luthens, Amalia K. ;
Arnold, Andrea L. ;
Reber, Stefan O. ;
Huber-Lang, Markus ;
Lowry, Christopher A. ;
Halbgebauer, Rebecca .
SCIENTIFIC REPORTS, 2021, 11 (01)
[7]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[8]   Efficacy of AI-Assisted Personalized Microbiome Modulation by Diet in Functional Constipation: A Randomized Controlled Trial [J].
Arslan, Naciye Cigdem ;
Gundogdu, Aycan ;
Tunali, Varol ;
Topgul, Oguzhan Hakan ;
Beyazgul, Damla ;
Nalbantoglu, Ozkan Ufuk .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (22)
[9]   Machine Learning Strategy for Gut Microbiome-Based Diagnostic Screening of Cardiovascular Disease [J].
Aryal, Sachin ;
Alimadadi, Ahmad ;
Manandhar, Ishan ;
Joe, Bina ;
Cheng, Xi .
HYPERTENSION, 2020, 76 (05) :1555-1562
[10]   Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methods [J].
Bakir-Gungor, Burcu ;
Lar, Hilal Hac ;
Jabeer, Amhar ;
Nalbantoglu, Ozkan Ufuk ;
Aran, Oya ;
Yousef, Malik .
PEERJ, 2022, 10