Cryogenic CMOS RF Circuits: A Promising Approach for Large-Scale Quantum Computing

被引:3
作者
Guo, Yanshu [1 ,2 ]
Liu, Qichun [3 ]
Li, Tiefu [1 ]
Deng, Ning [1 ]
Wang, Zhihua [1 ]
Jiang, Hanjun [1 ,4 ]
Zheng, Yuanjin [2 ]
机构
[1] Tsinghua Univ, Sch Integrated Circuits, Beijing 100084, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[4] Tsinghua Univ Shenzhen, Res Inst, Shenzhen 518057, Peoples R China
关键词
Qubit; Cryogenics; Radio frequency; Threshold voltage; Semiconductor device modeling; Integrated circuit modeling; Superconducting cables; Cryogenic circuits; quantum computing; qubit controller; qubit state readout; BULK-CMOS; FREQUENCY NOISE; 4.2; K; TECHNOLOGY; MOSFETS; CHIP;
D O I
10.1109/TCSII.2023.3333540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a brief overview of cryogenic CMOS circuits for large-scale quantum computing, especially the cryogenic RF circuits from the functional blocks to system-level ASICs. To start with, the cryogenic CMOS device characteristics of the process nodes ranging from 180nm to 5nm are examined and compared. The cryogenic RF blocks including the LNA and VCO in the recent literature are then briefly reviewed, with highlights on the key design points. The evolution of state-of-the-art system-level quantum interface cryogenic circuits is given including the design requirements, top-level architectures, and design considerations. The future directions and trends are also briefly discussed, aiming to promote the integration level of quantum computing.
引用
收藏
页码:1619 / 1625
页数:7
相关论文
共 50 条
  • [11] Prospects for Parametric Amplifiers in Large-scale Superconducting Quantum Computing
    Aumentado, Jose
    2022 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS 2022), 2022, : 76 - 79
  • [12] Cryogenic Floating-Gate CMOS Circuits for Quantum Control
    Hasler J.
    Dick N.
    Das K.
    Degnan B.
    Moini A.
    Reilly D.
    IEEE Transactions on Quantum Engineering, 2021, 2
  • [13] On the VCO/Frequency Divider Interface in Cryogenic CMOS PLL for Quantum Computing Applications
    Gira, Gabriele
    Ferraro, Elena
    Borgarino, Mattia
    ELECTRONICS, 2021, 10 (19)
  • [14] A 3.5K 4-6 GHz RF-DAC for Cryogenic Quantum Applications in 28-nm Bulk CMOS
    Guo, Yanshu
    Li, Yaoyu
    Huang, Wenqiang
    Liu, Qichun
    Li, Tiefu
    Wang, Zhihua
    Jiang, Hanjun
    Zheng, Yuanjin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (09) : 4071 - 4075
  • [15] Monolithically Integrated C-Band Low-Noise Amplifiers for Use in Cryogenic Large-Scale RF Systems
    Heinz, Felix
    Thome, Fabian
    Leuther, Arnulf
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (04) : 2442 - 2451
  • [16] Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs
    Bonen, S.
    Alakusu, U.
    Duan, Y.
    Gong, M. J.
    Dadash, M. S.
    Lucci, L.
    Daughton, D. R.
    Adam, G. C.
    Iordanescu, S.
    Pasteanu, M.
    Giangu, I.
    Jia, H.
    Gutierrez, L. E.
    Chen, W. T.
    Messaoudi, N.
    Harame, D.
    Mueller, A.
    Mansour, R. R.
    Asbeck, P.
    Voinigescu, S. P.
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (01) : 127 - 130
  • [17] Compact Modeling of SiGe HBTs for Design of Cryogenic Control and Readout Circuits for Quantum Computing
    Ying, Hanbin
    Rao, Sunil G.
    Teng, Jeffrey W.
    Frounchi, Milad
    Muller, Markus
    Jin, Xiaodi
    Schroter, Michael
    Cressler, John D.
    2020 IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM (BCICTS), 2020,
  • [18] Classical Control of Large-Scale Quantum Computers
    Devitt, Simon J.
    REVERSIBLE COMPUTATION, RC 2014, 2014, 8507 : 26 - 39
  • [19] Toward large-scale fault-tolerant universal photonic quantum computing
    Takeda, S.
    Furusawa, A.
    APL PHOTONICS, 2019, 4 (06)
  • [20] Scalability of Large-Scale Photonic Integrated Circuits
    Su, Yikai
    He, Yu
    Guo, Xuhan
    Xie, Weiqiang
    Ji, Xingchen
    Wang, Hongwei
    Cai, Xinlun
    Tong, Limin
    Yu, Siyuan
    ACS PHOTONICS, 2023, 10 (07) : 2020 - 2030