Dehydration of Lipid Membranes Drives Redistribution of Cholesterol Between Lateral Domains

被引:0
|
作者
Orlikowska-Rzeznik, Hanna [1 ]
Krok, Emilia [1 ]
Domanska, Maria [2 ]
Setny, Piotr [2 ]
Lagowska, Anna [1 ]
Chattopadhyay, Madhurima [1 ,3 ]
Piatkowski, Lukasz [1 ]
机构
[1] Poznan Univ Tech, Fac Mat Engn & Tech Phys, PL-60965 Poznan, Poland
[2] Univ Warsaw, Ctr New Technol, Biomol Modelling Grp, PL-02097 Warsaw, Poland
[3] Univ Texas Southwestern Med Ctr, Dept Biophys, Dallas, TX USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 16期
关键词
RAFTS; MODEL; ENTRY; SPHINGOMYELIN; AFFINITY; STEROLS; CELLS; HIV-1;
D O I
10.1021/acs.jpclett.4c00332
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cholesterol-rich lipid rafts are found to facilitate membrane fusion, central to processes like viral entry, fertilization, and neurotransmitter release. While the fusion process involves local, transient membrane dehydration, the impact of reduced hydration on cholesterol's structural organization in biological membranes remains unclear. Here, we employ confocal fluorescence microscopy and atomistic molecular dynamics simulations to investigate cholesterol behavior in phase-separated lipid bilayers under controlled hydration. We unveiled that dehydration prompts cholesterol release from raft-like domains into the surrounding fluid phase. Unsaturated phospholipids undergo more significant dehydration-induced structural changes and lose more hydrogen bonds with water than sphingomyelin. The results suggest that cholesterol redistribution is driven by the equalization of biophysical properties between phases and the need to satisfy lipid hydrogen bonds. This underscores the role of cholesterol-phospholipid-water interplay in governing cholesterol affinity for a specific lipid type, providing a new perspective on the regulatory role of cell membrane heterogeneity during membrane fusion.
引用
收藏
页码:4515 / 4522
页数:8
相关论文
共 50 条
  • [31] Chain ordering of hybrid lipids can stabilize domains in saturated/hybrid/cholesterol lipid membranes
    Yamamoto, T.
    Brewster, R.
    Safran, S. A.
    EPL, 2010, 91 (02)
  • [32] Transmembrane lipid asymetry and lateral domains
    Devaux, Philippe F.
    Lopez-Montero, Ivan
    Veles, Marisela
    BIOPHYSICAL JOURNAL, 2007, : 23A - 23A
  • [33] Nanoscale Electrostatic Domains in Cholesterol-Laden Lipid Membranes Create a Target for Amyloid Binding
    Drolle, Elizabeth
    Gaikwad, Ravi M.
    Leonenko, Zoya
    BIOPHYSICAL JOURNAL, 2012, 103 (04) : L27 - L29
  • [34] Tethering of lipid membranes reorganizes the distribution of lipid domains
    Fernandes, F.
    Sarmento, M. J.
    Prieto, M.
    FEBS JOURNAL, 2012, 279 : 128 - 128
  • [35] LIPID DOMAINS IN BIOLOGICAL-MEMBRANES
    GLASER, M
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (04) : 475 - 481
  • [36] Coarsening Dynamics of Domains in Lipid Membranes
    Stanich, Cynthia A.
    Honerkamp-Smith, Aurelia R.
    Putzel, Gregory G.
    Warth, Christopher S.
    Lamprecht, Andrea K.
    Mandal, Pritam
    Mann, Elizabeth
    Hua, Thien-An D.
    Keller, Sarah L.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 97A - 97A
  • [37] Coarsening Dynamics of Domains in Lipid Membranes
    Stanich, Cynthia A.
    Honerkamp-Smith, Aurelia R.
    Putzel, Gregory Garbes
    Warth, Christopher S.
    Lamprecht, Andrea K.
    Mandal, Pritam
    Mann, Elizabeth
    Hua, Thien-An D.
    Keller, Sarah L.
    BIOPHYSICAL JOURNAL, 2013, 105 (02) : 444 - 454
  • [38] Lateral forces acting between particles in liquid films or lipid membranes
    Kralchevsky, PA
    ADVANCES IN BIOPHYSICS, VOL 34, 1997: PROTEIN ARRAY: AN ALTERNATIVE BIOMOLECULAR SYSTEM, 1996, 34 : 25 - 39
  • [39] Transport of (Glyco)sphingolipids in and between cellular membranes;: Multidrug transporters and lateral domains
    van Meer, G
    Sillence, D
    Sprong, H
    Kälin, N
    Raggers, R
    BIOSCIENCE REPORTS, 1999, 19 (04) : 327 - 333
  • [40] Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes
    Ikonen, Elina
    Zhou, Xin
    DEVELOPMENTAL CELL, 2021, 56 (10) : 1430 - 1436