Aligning Geometric Spatial Layout in Cross-View Geo-Localization via Feature Recombination

被引:0
|
作者
Zhang, Qingwang [1 ]
Zhu, Yingying [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-view geo-localization holds significant potential for various applications, but drastic differences in viewpoints and visual appearances between cross-view images make this task extremely challenging. Recent works have made notable progress in cross-view geo-localization. However, existing methods either ignore the correspondence between geometric spatial layout in cross-view images or require high costs or strict constraints to achieve such alignment. In response to these challenges, we propose a Feature Recombination Module (FRM) that explicitly establishes the geometric spatial layout correspondences between two views. Unlike existing methods, FRM aligns geometric spatial layout by directly recombining features, avoiding image preprocessing, and introducing no additional computational and parameter costs. This effectively reduces ambiguities caused by geometric misalignments between ground-level and aerial-level images. Furthermore, it is not sensitive to frameworks and applies to both CNN-based and Transformer-based architectures. Additionally, as part of the training procedure, we also introduce a novel weighted ( B+1)-tuple loss (WBL) as optimization objective. Compared to the widely used weighted soft margin ranking loss, this innovative loss enhances convergence speed and final performance. Based on the two core components (FRM and WBL), we develop an end-to-end network architecture (FRGeo) to address these limitations from a different perspective. Extensive experiments show that our proposed FRGeo not only achieves state-of-the-art performance on cross-view geo-localization benchmarks, including CVUSA, CVACT, and VIGOR, but also is significantly superior or competitive in terms of computational complexity and trainable parameters. Our project homepage is at https://zqwlearning.github.io/FRGeo.
引用
收藏
页码:7251 / 7259
页数:9
相关论文
共 50 条
  • [21] Cross-View Visual Geo-Localization for Outdoor Augmented Reality
    Mithun, Niluthpol Chowdhury
    Minhas, Kshitij S.
    Chiu, Han-Pang
    Oskiper, Taragay
    Sizintsev, Mikhail
    Samarasekera, Supun
    Kumar, Rakesh
    2023 IEEE CONFERENCE VIRTUAL REALITY AND 3D USER INTERFACES, VR, 2023, : 493 - 502
  • [22] Geographic Semantic Network for Cross-View Image Geo-Localization
    Zhu, Yingying
    Sun, Bin
    Lu, Xiufan
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [23] Cross-view Geo-localization with Layer-to-Layer Transformer
    Yang, Hongji
    Lu, Xiufan
    Zhu, Yingying
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [24] Learning Cross-View Geo-Localization Embeddings via Dynamic Weighted Decorrelation Regularization
    Wang, Tingyu
    Zheng, Zhedong
    Zhu, Zunjie
    Sun, Yaoqi
    Yan, Chenggang
    Yang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [25] Predictive Information Preservation via Variational Information Bottleneck for Cross-View Geo-Localization
    Li, Wansi
    Hu, Qian
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT I, 2022, 1700 : 403 - 419
  • [26] UAV Geo-Localization Dataset and Method Based on Cross-View Matching
    Yao, Yuwen
    Sun, Cheng
    Wang, Tao
    Yang, Jianxing
    Zheng, Enhui
    SENSORS, 2024, 24 (21)
  • [27] Enhancing Cross-View Geo-Localization With Domain Alignment and Scene Consistency
    Xia, Panwang
    Wan, Yi
    Zheng, Zhi
    Zhang, Yongjun
    Deng, Jiwei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13271 - 13281
  • [28] Cross-View Object Geo-Localization in a Local Region With Satellite Imagery
    Sun, Yuxi
    Ye, Yunming
    Kang, Jian
    Fernandez-Beltran, Ruben
    Feng, Shanshan
    Li, Xutao
    Luo, Chuyao
    Zhang, Puzhao
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Combining OpenStreetMap with Satellite Imagery to Enhance Cross-View Geo-Localization
    Hu, Yuekun
    Liu, Yingfan
    Hui, Bin
    SENSORS, 2025, 25 (01)
  • [30] Learning Cross-View Visual Geo-Localization Without Ground Truth
    Li, Haoyuan
    Xu, Chang
    Yang, Wen
    Yu, Huai
    Xia, Gui-Song
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1