Energetics of the H-Bond Network in Exiguobacterium sibiricum Rhodopsin

被引:1
|
作者
Noji, Tomoyasu [1 ,2 ]
Chiba, Yoshihiro [1 ]
Saito, Keisuke [1 ,2 ]
Ishikita, Hiroshi [1 ,2 ]
机构
[1] Univ Tokyo, Dept Appl Chem, Tokyo 1138654, Japan
[2] Univ Tokyo, Res Ctr Adv Sci & Technol, Tokyo 1538904, Japan
基金
日本学术振兴会;
关键词
ACETOACETATE DECARBOXYLASE; HISTIDINE-RESIDUES; PROTON-TRANSFER; IMIDAZOLE RING; HYDROGEN-BONDS; SCHIFF-BASE; BACTERIORHODOPSIN; PK(A); MICROENVIRONMENTS; ASPARTATE-85;
D O I
10.1021/acs.biochem.4c00182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pK a value of similar to 6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85<middle dot><middle dot><middle dot>His57<middle dot><middle dot><middle dot>H2O<middle dot><middle dot><middle dot>Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
引用
收藏
页码:1505 / 1512
页数:8
相关论文
共 50 条
  • [21] Effects of the H-bond bridge geometry on the vibrational spectra of water: The simplest models of the H-bond potential
    Yu. Ya. Efimov
    Journal of Structural Chemistry, 2008, 49 : 261 - 269
  • [22] H-bond donors as acid catalysts
    不详
    CHEMICAL & ENGINEERING NEWS, 2002, 80 (02) : 22 - 22
  • [23] Alteration of the H-Bond to the A1A Phylloquinone in Photosystem I: Influence on the Kinetics and Energetics of Electron Transfer
    Srinivasan, Nithya
    Santabarbara, Stefano
    Rappaport, Fabrice
    Carbonera, Donatella
    Redding, Kevin
    van der Est, Art
    Golbeck, John H.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (08): : 1751 - 1759
  • [24] Weak H-bond complexes.
    Zvereva, NA
    Nabiev, SS
    Ponomarev, YN
    SEVENTH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, 2000, 4341 : 41 - 48
  • [25] H-Bond donor parameters for cations
    Pike, Sarah J.
    Lavagnini, Ennio
    Varley, Lisa M.
    Cook, Joanne L.
    Hunter, Christopher A.
    CHEMICAL SCIENCE, 2019, 10 (23) : 5943 - 5951
  • [26] EXPERIMENTAL TESTS OF THE H-BOND COOPERATIVITY
    KLEEBERG, H
    LUCK, WAP
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1989, 270 (03): : 613 - 625
  • [27] The role of the H-bond network in the creation of the life-giving properties of water
    Fisenko, Anatohy I.
    Malomuzh, Nikolay P.
    CHEMICAL PHYSICS, 2008, 345 (2-3) : 164 - 172
  • [28] H-Bond Acceptor Parameters for Anions
    Pike, Sarah J.
    Hutchinson, Jordan J.
    Hunter, Christopher A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (19) : 6700 - 6706
  • [29] ANHARMONICITY OF THE X-H BOND - CHANGES ON H-BOND FORMATION
    KOLOMIJTSOVA, TD
    SHCHEPKIN, DN
    JOURNAL OF MOLECULAR STRUCTURE, 1994, 322 : 211 - 216
  • [30] On the elasticity of the H-bond network in the aqueous solutions of diamines, diols, and amino alcohols
    M. N. Rodnikova
    T. M. Val’kovskaya
    J. Barthel
    D. B. Kayumova
    Russian Journal of Physical Chemistry, 2006, 80 : 483 - 485