Unravelling tumour cell diversity and prognostic signatures in cutaneous melanoma through machine learning analysis

被引:0
作者
Cheng, Wenhao [1 ]
Ni, Ping [2 ]
Wu, Hao [3 ,4 ]
Miao, Xiaye [5 ]
Zhao, Xiaodong [6 ]
Yan, Dali [4 ,7 ]
机构
[1] Nanjing Med Univ, Xuzhou Med Univ, Peoples Hosp Lianyungang 1, Affiliated Lianyungang Hosp,Affiliated Hosp 1,Kang, Lianyungang, Peoples R China
[2] Third Peoples Hosp Kunshan City, Dept Geriatr, Kunshan City, Kunshan, Peoples R China
[3] Xuzhou Med Univ, Affiliated Huaian Hosp, Dept Oncol, Huaian, Peoples R China
[4] Second Peoples Hosp Huaian, Huaian, Peoples R China
[5] Yangzhou Univ, Northern Jiangsu Peoples Hosp, Dept Lab Med, Yangzhou, Jiangsu, Peoples R China
[6] Nanjing Med Univ, Affiliated Suqian Peoples Hosp 1, Dept Hematol, Suqian, Peoples R China
[7] Xuzhou Med Univ, Affiliated Huaian Hosp, Dept Tradit Chinese Med & Oncol, Huaian, Peoples R China
关键词
immunotherapy; machine learning; melanoma; overall survival; tumour microenvironment; METASTATIC MELANOMA; SINGLE;
D O I
10.1111/jcmm.18570
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Melanoma, a highly malignant tumour, presents significant challenges due to its cellular heterogeneity, yet research on this aspect in cutaneous melanoma remains limited. In this study, we utilized single-cell data from 92,521 cells to explore the tumour cell landscape. Through clustering analysis, we identified six distinct cell clusters and investigated their differentiation and metabolic heterogeneity using multi-omics approaches. Notably, cytotrace analysis and pseudotime trajectories revealed distinct stages of tumour cell differentiation, which have implications for patient survival. By leveraging markers from these clusters, we developed a tumour cell-specific machine learning model (TCM). This model not only predicts patient outcomes and responses to immunotherapy, but also distinguishes between genomically stable and unstable tumours and identifies inflamed ('hot') versus non-inflamed ('cold') tumours. Intriguingly, the TCM score showed a strong association with TOMM40, which we experimentally validated as an oncogene promoting tumour proliferation, invasion and migration. Overall, our findings introduce a novel biomarker score that aids in selecting melanoma patients for improved prognoses and targeted immunotherapy, thereby guiding clinical treatment decisions.
引用
收藏
页数:18
相关论文
共 32 条
  • [1] Human melanocyte development and melanoma dedifferentiation at single-cell resolution
    Belote, Rachel L.
    Le, Daniel
    Maynard, Ashley
    Lang, Ursula E.
    Sinclair, Adriane
    Lohman, Brian K.
    Planells-Palop, Vicente
    Baskin, Laurence
    Tward, Aaron D.
    Darmanis, Spyros
    Judson-Torres, Robert L.
    [J]. NATURE CELL BIOLOGY, 2021, 23 (09) : 1035 - +
  • [2] Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival
    Bogunovic, Dusan
    O'Neill, David W.
    Belitskaya-Levy, Ilana
    Vacic, Vladimir
    Yu, Yi-Lo
    Adams, Sylvia
    Darvishian, Farbod
    Berman, Russell
    Shapiro, Richard
    Pavlick, Anna C.
    Lonardi, Stefano
    Zavadil, Jiri
    Osman, Iman
    Bhardwaj, Nina
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (48) : 20429 - 20434
  • [3] CD4+ T cell help in cancer immunology and immunotherapy
    Borst, Jannie
    Ahrends, Tomasz
    Babala, Nikolina
    Melief, Cornelis J. M.
    Kastenmueller, Wolfgang
    [J]. NATURE REVIEWS IMMUNOLOGY, 2018, 18 (10) : 635 - 647
  • [4] Tertiary lymphoid structures improve immunotherapy and survival in melanoma
    Cabrita, Rita
    Lauss, Martin
    Sanna, Adriana
    Donia, Marco
    Larsen, Mathilde Skaarup
    Mitra, Shamik
    Johansson, Iva
    Phung, Bengt
    Harbst, Katja
    Vallon-Christersson, Johan
    van Schoiack, Alison
    Loevgren, Kristina
    Warren, Sarah
    Jirstroem, Karin
    Olsson, Hakan
    Pietras, Kristian
    Ingvar, Christian
    Isaksson, Karolin
    Schadendorf, Dirk
    Schmidt, Henrik
    Bastholt, Lars
    Carneiro, Ana
    Wargo, Jennifer A.
    Svane, Inge Marie
    Jonsson, Goran
    [J]. NATURE, 2020, 577 (7791) : 561 - +
  • [5] Integrated analysis of multimodal single-cell data with structural similarity
    Cao, Yingxin
    Fu, Laiyi
    Wu, Jie
    Peng, Qinke
    Nie, Qing
    Zhang, Jing
    Xie, Xiaohui
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (21) : E121
  • [6] Approaches to treat immune hot, altered and cold tumours with combination immunotherapies
    Galon, Jerome
    Bruni, Daniela
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2019, 18 (03) : 197 - 218
  • [7] Design and Analysis of Single-Cell Sequencing Experiments
    Gruen, Dominic
    van Oudenaarden, Alexander
    [J]. CELL, 2015, 163 (04) : 799 - 810
  • [8] Single-cell transcriptional diversity is a hallmark of developmental potential
    Gulati, Gunsagar S.
    Sikandar, Shaheen S.
    Wesche, Daniel J.
    Manjunath, Anoop
    Bharadwaj, Anjan
    Berger, Mark J.
    Ilagan, Francisco
    Kuo, Angera H.
    Hsieh, Robert W.
    Cai, Shang
    Zabala, Maider
    Scheeren, Ferenc A.
    Lobo, Neethan A.
    Qian, Dalong
    Yu, Feiqiao B.
    Dirbas, Frederick M.
    Clarke, Michael F.
    Newman, Aaron M.
    [J]. SCIENCE, 2020, 367 (6476) : 405 - +
  • [9] GSVA: gene set variation analysis for microarray and RNA-Seq data
    Haenzelmann, Sonja
    Castelo, Robert
    Guinney, Justin
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [10] Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects
    Jain, Saket
    Rick, Jonathan W.
    Joshi, Rushikesh S.
    Beniwal, Angad
    Spatz, Jordan
    Gill, Sabraj
    Chang, Alexander Chih-Chieh
    Choudhary, Nikita
    Nguyen, Alan T.
    Sudhir, Sweta
    Chalif, Eric J.
    Chen, Jia-Shu
    Chandra, Ankush
    Haddad, Alexander F.
    Wadhwa, Harsh
    Shah, Sumedh S.
    Choi, Serah
    Hayes, Josie L.
    Wang, Lin
    Yagnik, Garima
    Costello, Joseph F.
    Diaz, Aaron
    Heiland, Dieter Henrik
    Aghi, Manish K.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2023, 133 (05)