GaN-Based HEMT-Type VUV Phototransistors With Superior Triple-Mode Photodetection

被引:7
作者
Liang, Fangzhou [1 ]
Zhang, Haochen [1 ]
Zhu, Siqi [2 ]
Yang, Lei [1 ]
Huang, Zhe [1 ]
Liang, Kun [1 ]
Xing, Zhanyong [1 ]
Wang, Hu [1 ]
Zhang, Mingshuo [1 ]
Li, Jiayao [1 ]
Ye, Yankai [1 ]
Sun, Haiding [1 ]
机构
[1] Univ Sci & Technol China, Sch Microelect, IGaN Lab, Hefei 230026, Anhui, Peoples R China
[2] Sun Yat Sen Univ, Sch Mat, State Key Lab Optoelect Mat & Technol, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
Logic gates; HEMTs; Band structures; Wide band gap semiconductors; Aluminum gallium nitride; Electrons; Absorption; AlGaN; GaN heterojunctions; phototransistors; vacuum ultraviolet;
D O I
10.1109/LED.2024.3381838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a superior vacuum UV phototransistor (VUV PT) in the form of GaN-based HEMT architecture is demonstrated. With tunable gate/drain bias (VGS/VDS), the HEMT-type VUV PT is switchable among three detection modes including photoconduction (-5/10 V), photovoltaics (+/- 0.05/0 V), and self-powering (0/0 V). Strikingly, the device demonstrates record-high responsivity and detectivity under all the operation modes thanks to structural advantages in AlGaN/GaN heterojunction, including the shallow active region, unique band inclinations, and stable surface conditions. Our work highlights the great abilities of GaN-based HEMT as a promising platform to build multi-functional photoelectric systems.
引用
收藏
页码:853 / 856
页数:4
相关论文
共 39 条
[1]   Sub-bandgap absorption of gallium nitride determined by photothermal deflection spectroscopy [J].
Ambacher, O ;
Rieger, W ;
Ansmann, P ;
Angerer, H ;
Moustakas, TD ;
Stutzmann, M .
SOLID STATE COMMUNICATIONS, 1996, 97 (05) :365-370
[2]   Gate-controlled amplifiable ultraviolet AlGaN/GaN high-electron-mobility phototransistor [J].
Baek, Seung-Hye ;
Lee, Gun-Woo ;
Cho, Chu-Young ;
Lee, Sung-Nam .
SCIENTIFIC REPORTS, 2021, 11 (01)
[3]   Diamond detectors for LYRA, the solar VUV radiometer on board PROBA2 [J].
BenMoussa, A. ;
Hochedez, J. F. ;
Schuehle, U. ;
Schmutz, W. ;
Haenen, K. ;
Stockman, Y. ;
Soltani, A. ;
Scholze, F. ;
Kroth, U. ;
Mortet, V. ;
Theissen, A. ;
Laubis, C. ;
Richter, M. ;
Koller, S. ;
Defise, J. -M. ;
Koizumi, S. .
DIAMOND AND RELATED MATERIALS, 2006, 15 (4-8) :802-806
[4]   Characterization of AlN metal-semiconductor-metal diodes in the spectral range of 44-360 nm: Photoemission assessments [J].
BenMoussa, A. ;
Hochedez, J. F. ;
Dahal, R. ;
Li, J. ;
Lin, J. Y. ;
Jiang, H. X. ;
Soltani, A. ;
De Jaeger, J. -C. ;
Kroth, U. ;
Richter, M. .
APPLIED PHYSICS LETTERS, 2008, 92 (02)
[5]   GaN-Based Micro-Light-Emitting Diode Driven by a Monolithic Integrated Ultraviolet Phototransistor [J].
Chen, Dingbo ;
Li, Dong ;
Zeng, Guang ;
Hu, Fang-Chen ;
Li, Yu-Chun ;
Chen, Yu-Chang ;
Li, Xiao-Xi ;
Tang, Jun ;
Shen, Chao ;
Chi, Nan ;
Zhang, David Wei ;
Lu, Hong-Liang .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (01) :80-83
[6]   OPTICAL-PROPERTIES OF ALUMINUM OXYNITRIDES DEPOSITED BY LASER-ASSISTED CVD [J].
DEMIRYONT, H ;
THOMPSON, LR ;
COLLINS, GJ .
APPLIED OPTICS, 1986, 25 (08) :1311-1318
[7]   Bandgap Engineering of ZrGaO Films for Deep-Ultraviolet Detection [J].
Guo, Jianmiao ;
Ma, Minghe ;
Li, Yuqiang ;
Zhang, Dan ;
Liu, Yanghui ;
Zheng, Wei .
IEEE ELECTRON DEVICE LETTERS, 2021, 42 (06) :895-898
[8]   Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system [J].
Huang, Chen ;
Zhang, Haochen ;
Sun, Haiding .
NANO ENERGY, 2020, 77
[9]   Extremely High Photovoltage (3.16 V) Achieved in Vacuum-Ultraviolet-Oriented van der Waals Photovoltaics [J].
Jia, Lemin ;
Li, Titao ;
Huang, Feng ;
Zheng, Wei .
ACS PHOTONICS, 2022, 9 (06) :2101-2108
[10]   Vacuum Ultraviolet (120-200 nm) Avalanche Photodetectors [J].
Jia, Lemin ;
Huang, Feng ;
Zheng, Wei .
ADVANCED OPTICAL MATERIALS, 2022, 10 (08)