Enhancing LC x LC separations through multi-task Bayesian optimization

被引:2
作者
Boelrijk, Jim [1 ,2 ]
Molenaar, Stef R. A. [3 ,4 ]
Bos, Tijmen S. [3 ,4 ]
Dahlseid, Tina A. [5 ]
Ensing, Bernd [1 ,6 ]
Stoll, Dwight R. [3 ]
Forre, Patrick [1 ,2 ]
Pirok, Bob W. J. [1 ,4 ]
机构
[1] Univ Amsterdam, Informat Inst, AI4Sci Lab, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] Univ Amsterdam, Informat Inst, AMLab, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Amsterdam Inst Mol & Life Sci, Div Bioanalyt Chem, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands
[4] Univ Amsterdam, Vant Hoff Inst Mol Sci, Analyt Chem Grp, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[5] Gustavus Adolphus Coll, Dept Chem, St Peter, MN 56082 USA
[6] Univ Amsterdam, Vant Hoff Inst Mol Sci, Comp Chem Grp, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
基金
美国国家科学基金会; 荷兰研究理事会;
关键词
Bayesian optimization; 2D-LC; Closed-loop method development; Machine learning; Shifting gradients; 2-DIMENSIONAL LIQUID-CHROMATOGRAPHY; MASS-SPECTROMETRY; PHASE; PERFORMANCE; RETENTION; INSTRUMENTATION;
D O I
10.1016/j.chroma.2024.464941
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Method development in comprehensive two-dimensional liquid chromatography (LC x LC) is a challenging process. The interdependencies between the two dimensions and the possibility of incorporating complex gradient profiles, such as multi -segmented gradients or shifting gradients, make trial -and -error method development time-consuming and highly dependent on user experience. Retention modeling and Bayesian optimization (BO) have been proposed as solutions to mitigate these issues. However, both approaches have their strengths and weaknesses. On the one hand, retention modeling, which approximates true retention behavior, depends on effective peak tracking and accurate retention time and width predictions, which are increasingly challenging for complex samples and advanced gradient assemblies. On the other hand, Bayesian optimization may require many experiments when dealing with many adjustable parameters, as in LC x LC. Therefore, in this work, we investigate the use of multi -task Bayesian optimization (MTBO), a method that can combine information from both retention modeling and experimental measurements. The algorithm was first tested and compared with BO using a synthetic retention modeling test case, where it was shown that MTBO finds better optima with fewer method -development iterations than conventional BO. Next, the algorithm was tested on the optimization of a method for a pesticide sample and we found that the algorithm was able to improve upon the initial scanning experiments. Multi -task Bayesian optimization is a promising technique in situations where modeling retention is challenging, and the high number of adjustable parameters and/or limited optimization budget makes traditional Bayesian optimization impractical.
引用
收藏
页数:11
相关论文
共 51 条
[11]   Multi-dimensional liquid chromatography: principles, practice, and applications [J].
Cacciola, Francesco .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2023, 415 (16) :3055-3056
[12]   Application of Comprehensive Two-Dimensional Liquid Chromatography for Carotenoid Analysis in Red Mamey (Pouteria sapote) Fruit [J].
Cacciola, Francesco ;
Giuffrida, Daniele ;
Utczas, Margita ;
Mangraviti, Domenica ;
Dugo, Paola ;
Menchaca, Dania ;
Murillo, Enrique ;
Mondello, Luigi .
FOOD ANALYTICAL METHODS, 2016, 9 (08) :2335-2341
[13]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[14]   Sense and nonsense of shifting gradients in on-line comprehensive reversed-phase LC x reversed-phase LC [J].
Chapel, Soraya ;
Rouviere, Florent ;
Heinisch, Sabine .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2022, 1212
[15]   Recent applications of retention modelling in liquid chromatography [J].
den Uijl, Mimi J. ;
Schoenmakers, Peter J. ;
Pirok, Bob W. J. ;
van Bommel, Maarten R. .
JOURNAL OF SEPARATION SCIENCE, 2021, 44 (01) :88-114
[16]   2-DIMENSIONAL COLUMN LIQUID-CHROMATOGRAPHIC TECHNIQUE FOR RESOLUTION OF COMPLEX-MIXTURES [J].
ERNI, F ;
FREI, RW .
JOURNAL OF CHROMATOGRAPHY, 1978, 149 (FEB) :561-569
[17]  
Garnett R., 2022, Bayesian Optimization
[18]   Computer aided optimization of multilinear gradient elution in liquid chromatography [J].
Hao, Weiqiang ;
Li, Bo ;
Deng, Yuying ;
Chen, Qiang ;
Liu, Lijuan ;
Shen, Qiaoyin .
JOURNAL OF CHROMATOGRAPHY A, 2021, 1635 (1635)
[19]   Peak compression in linear gradient elution liquid chromatography [J].
Hao, Weiqiang ;
Wang, Kai ;
Yue, Bangyi ;
Chen, Qiang ;
Huang, Yibo ;
Yu, Jianjun ;
Li, Dashuai .
JOURNAL OF CHROMATOGRAPHY A, 2020, 1619
[20]  
Henderson H.V., 1983, Linear Multilinear Algebra, V14, P113, DOI [10.1080/03081088308817548, DOI 10.1080/03081088308817548]