Optimizing a machine learning design of dielectric properties in lead-free piezoelectric ceramics

被引:2
作者
Rocha, Helder R. O. [1 ]
Roukos, Roy [2 ]
Abou Dargham, Sara [3 ]
Romanos, Jimmy [4 ]
Chaumont, Denis [2 ]
Silva, Jair A. L. [1 ,3 ]
Wortche, Heinrich [3 ,5 ]
机构
[1] Univ Fed Espirito Santo, Dept Elect Engn, Vitoria, ES, Brazil
[2] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, CNRS, 9 Ave Alain Savary,BP 47870, F-21078 Dijon, France
[3] Hanze Univ Appl Sci HUAS, Inst Engn, Sensors & Smart Syst Grp, NL-9747 AS Groningen, Netherlands
[4] Lebanese Amer Univ LAU, Dept Nat Sci, POB 36, Byblos, Lebanon
[5] Eindhoven Univ Technol, Dept Elect Engn, NL-5612 AZ Eindhoven, Netherlands
关键词
Piezoelectric; Lead-free ceramics; Dielectric properties; Machine learning; Optimization; PERSPECTIVE; SYSTEM;
D O I
10.1016/j.matdes.2024.113053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Designing lead-free piezoelectric ceramics with tailored electrical properties remains a critical challenge for various applications. In this paper we present a novel methodology integrating Machine Learning (ML) and optimization procedures to fine-tune electrical properties in lead-free (1-x) Na-0.5 Bi-0.5 TiO3 - x CaTiO3 piezoelectric ceramics. A comprehensive dataset of dielectric measurements serves as the foundation for training ML models that accurately predict the permittivity (epsilon') and dielectric loss (tan delta) as functions of Ca2+ concentration (x % Ca), temperature and frequency. Two ML techniques are evaluated: random forest regression, and Multi-Layer Perceptron neural network Regression (MLPR). The MLPR model exhibited a superior regression performance, achieving a correlation coefficient of 0.931 and a root mean squared error of 0.029. The MLPR was then optimized by the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to maximizes epsilon' while minimizes tan delta. Within the NSGA-II framework, the optimal values were found at the Pareto curve knee, corresponding to a frequency, temperature, and x % Ca of 609.739 kHz, 398.15 K, and 6.10, respectively, resulting in epsilon' equal to 857.87 and tan delta equal to 0.0120. This approach demonstrates the effectiveness of combining ML and optimization for designing the electrical properties of piezoelectric ceramics, paving the way for more efficient and targeted material development.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Prediction of the Curie temperatures of ferroelectric solid solutions using machine learning methods [J].
Askanazi, Evan M. ;
Yadav, Suhas ;
Grinberg, Ilya .
COMPUTATIONAL MATERIALS SCIENCE, 2021, 199
[2]   A classical mechanics model for the interpretation of piezoelectric property data [J].
Bell, Andrew J. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (22)
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Minimum Manhattan Distance Approach to Multiple Criteria Decision Making in Multiobjective Optimization Problems [J].
Chiu, Wei-Yu ;
Yen, Gary G. ;
Juan, Teng-Kuei .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (06) :972-985
[5]  
Cross L.E., 1987, J. Am. Ceram. Soc., V289
[6]  
Curie P., 1880, C. R. Seances Acad. Sci. Paris, V91, P295
[7]  
Cutler A, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P157, DOI 10.1007/978-1-4419-9326-7_5
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]   Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators [J].
Fan, Pengyuan ;
Liu, Kai ;
Ma, Weigang ;
Tan, Hua ;
Zhang, Qi ;
Zhang, Ling ;
Zhou, Changrong ;
Salamon, David ;
Zhang, Shan-Tao ;
Zhang, Yangjun ;
Nan, Bo ;
Zhang, Haibo .
JOURNAL OF MATERIOMICS, 2021, 7 (03) :508-544
[10]  
Geron A., 2022, HANDS ON MACHINE LEA