Impact of historical soil management on the interaction of plant-growth-promoting bacteria with maize (Zea mays L.)

被引:0
|
作者
Guidinelle, Rebyson Bissaco [1 ,6 ]
Burak, Diego Lang [1 ,2 ]
Rangel, Otacilio Jose Passos [2 ]
Pecanha, Anderson Lopes [3 ]
Passos, Renato Ribeiro [1 ]
da Rocha, Leticia Oliveira [5 ]
Olivares, Fabio Lopes [4 ,5 ]
Mendonca, Eduardo de Sa [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Agron, Alto Univ S-N, BR-29500000 Alegre, ES, Brazil
[2] Fed Inst Espirito Santo, IFES, Campus Alegre,BR 482,Km 7, BR-2950000 Alegre, ES, Brazil
[3] Univ Fed Espirito Santo, Dept Biol, Alto Univ S-N, BR-29500000 Alegre, ES, Brazil
[4] Univ Estadual Norte Fluminense, Lab Cell & Tissue Biol, BR-28013602 Rio De Janeiro, Brazil
[5] Univ Estadual Norte Fluminense, Ctr Dev Biol Inputs Agr, BR-28013602 Rio De Janeiro, Brazil
[6] Univ Fed Espirito Santo, Ctr Agr Sci & Engn, Post Grad Programme Agron, Alto Univ S-N,Guararema 12, BR-29500000 Alegre, ES, Brazil
关键词
Herbaspirillum and Azospirillum inoculants; Soil management; Swine wastewater; No-tillage system; Creole corn nutrition; Forage yield; AZOSPIRILLUM-BRASILENSE; HERBASPIRILLUM-SEROPEDICAE; CO-INOCULATION; ORGANIC-CARBON; SOLUBILIZATION; PHOSPHORUS; PHOSPHATE;
D O I
10.1016/j.heliyon.2024.e28754
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Edaphic factors can modulate the effects of microbial inoculants on crop yield promotion. Given the potential complexity of microbial inoculant responses to diverse soil management practices, we hypothesize that sustainable management of soil and water irrigation may improve soil quality and enhance the effects of plant growth-promoting bacteria (PGPB). Consequently, the primary objective was to assess the effectiveness of microbial inoculants formulated with Herbaspirillum seropedicae (Hs) and Azospirillum brasilense (Ab) on maize growth in soils impacted by different historical conservation management systems. We evaluated two soil management systems, two irrigation conditions, and four treatments: T0 - without bioinoculant and 100% doses of NPK fertilization; T1 - Hs + humic substances and 40% of NPK fertilization; T2 - Ab and 40% of NPK fertilization; T3 - co-inoculation (Hs + Ab) and 40% of NPK fertilization. Using a reduced fertilization dose (40% NPK) associated with microbial inoculants proved efficient in increasing maize shoot dry mass : on average, there was a 16% reduction compared to the treatment with 100% fertilization. In co-inoculation (Hs + Ab), the microbial inoculants showed a mutualistic effect on plant response, higher than isolate ones, especially increasing the nitrogen content in notillage systems irrigated by swine wastewater. Under lower nutrient availability and higher biological soil quality, the microbial bioinputs positively influenced root development, instantaneous water use efficiency, stomatal conductance, and nitrogen contents.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity
    Ullah, Sami
    Bano, Asghari
    CANADIAN JOURNAL OF MICROBIOLOGY, 2015, 61 (04) : 307 - 313
  • [2] Growth Promotion of Maize (Zea mays L.) by Plant-Growth-Promoting Rhizobacteria under Field Conditions
    Gholami, Ahmad
    Biyari, Atena
    Gholipoor, Manoochehr
    Rahmani, Hadi Asadi
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2012, 43 (09) : 1263 - 1272
  • [3] EFFECT OF PLANT GROWTH PROMOTING BACTERIA AND DROUGHT ON SPRING MAIZE (ZEA MAYS L.)
    Mubeen, Muhammad
    Bano, Asghari
    Ali, Barkat
    Ul Islam, Zia
    Ahmad, Ashfaq
    Hussain, Sajjad
    Fahad, Shah
    Nasim, Wajid
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (02) : 731 - 739
  • [4] Amelioration of growth of maize (Zea mays L.) seedling using plant growth promoting bacteria
    Kaneriya, Jinesh P.
    Pattani, Vivek B.
    Joshi, Krishna
    Gandhi, Dhara
    Sanghvi, Gaurav
    PLANT SCIENCE TODAY, 2024, 11 (02): : 353 - 362
  • [5] Role of Dominant Phyllosphere Bacteria with Plant Growth–Promoting Characteristics on Growth and Nutrition of Maize (Zea mays L.)
    Vahid Alah Jahandideh Mahjen Abadi
    Mozhgan Sepehri
    Hadi Asadi Rahmani
    Mehdi Zarei
    Abdolmajid Ronaghi
    Seyed Mohsen Taghavi
    Mahdieh Shamshiripour
    Journal of Soil Science and Plant Nutrition, 2020, 20 : 2348 - 2363
  • [6] Potential of growth-promoting bacteria in maize (Zea mays L.) varies according to soil moisture
    Araujo, Victor Lucas Vieira Prudencio
    Fracetto, Giselle Gomes Monteiro
    Silva, Antonio Marcos Miranda
    Pereira, Arthur Prudencio de Araujo
    Freitas, Caio Cesar Gomes
    Barros, Felipe Martins do Rego
    Santana, Maiele Cintra
    Feiler, Henrique Petry
    Matteoli, Filipe Pereira
    Fracetto, Felipe Jose Cury
    Cardoso, Elke Jurandy Bran Nogueira
    MICROBIOLOGICAL RESEARCH, 2023, 271
  • [7] Microalgae-bacteria interaction: a catalyst to improve maize (Zea mays L.) growth and soil fertility
    Solomon, Wogene
    Mutum, Lamnganbi
    Janda, Tibor
    Molnar, Zoltan
    CEREAL RESEARCH COMMUNICATIONS, 2024,
  • [8] Correction to: Role of Dominant Phyllosphere Bacteria with Plant Growth–Promoting Characteristics on Growth and Nutrition of Maize (Zea mays L.)
    Vahid Alah Jahandideh Mahjen Abadi
    Mozhgan Sepehri
    Hadi Asadi Rahmani
    Mehdi Zarei
    Abdolmajid Ronaghi
    Seyed Mohsen Taghavi
    Mahdieh Shamshiripour
    Journal of Soil Science and Plant Nutrition, 2021, 21 : 2740 - 2740
  • [9] Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.)
    Fernando Amezquita-Aviles, Carlos
    Brizeida Coronel-Acosta, Claudia
    de los Santos-Villalobos, Sergio
    Santoyo, Gustavo
    Isela Parra-Cota, Fannie
    BIOTECNIA, 2022, 24 (01): : 15 - 22
  • [10] Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria
    Jieli Peng
    Jia Ma
    Xiaoyan Wei
    Cuimian Zhang
    Nan Jia
    Xu Wang
    En Tao Wang
    Dong Hu
    Zhanwu Wang
    Annals of Microbiology, 2021, 71